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Abstract: This paper is meant as a survey of uncertainty analysis in civil engineering with an
emphasis on one of the unifying models: random sets. After a brief historical note about prob-
ability in civil engineering, various fundamental questions are addressed: sources of uncertainty
in engineering; measuring uncertainty: models and axioms; semantics: from the real world to the
model and back; aggregation and propagation of uncertainty; classification of models. In this general
discussion, a wide range of models will be incorporated: interval analysis, set-valued models, fuzzy
sets, probability, imprecise probability, random sets, sets of probability measures, and more. Further,
the theory of random sets will be featured in an engineering example. This theory is of intermediate
generality, but it allows one to treat intervals, bounding sets, probability distributions and imprecise
probability distributions on the same footing.
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1. Introduction

Uncertainty analysis in engineering is a vast domain. Uncertainty has come a long way from being
ignored (or buried in safety factors) to the idea that it should be actively controlled—as exemplified
by the fashionable catch words risk management and uncertainty quantification. Historically, the
civil engineering community formed the avantgarde in the 1950s by introducing probability as a
framework for modeling and quantifying uncertainty (Freudenthal, 1956; Bolotin, 1969). By now,
the probabilistic framework is the prevalent paradigm in civil engineering, as is expressed by the
European codes (Eurocode, 2002). For reasons discussed below, however, a certain uneasiness about
the sole use of probability emerged in parts of the community in the 1990s. Alternative models found
their entrance in the engineering literature, among them interval arithmetic, fuzzy sets, convex
models, info-gap analysis, worst case scenarios, random sets, belief functions, interval probability,
upper and lower previsions—just to mention a few of the proposals.

Most of the methods can be classified as one or the other combination of the poles intervals and
probability. In fact, the theory of random sets can provide a unifying framework in which most (but
not all) of the mentioned approaches can be accommodated.

This article starts with various general considerations about uncertainty in civil engineering.
Next, a list of models is presented, followed by a discussion of their axioms, semantics, and numerical
aspects. The last part of the paper presents an application of random sets in a geotechnical example.
This brief article cannot cover the whole picture, nor provide an extended list of references. For
that we refer to the review articles (Beer, Ferson and Kreinovich, 2013; Oberguggenberger, 2011)
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and, especially on random sets, (Oberguggenberger, 2014). The present paper is a condensed and
updated version of the latter two articles.

2. Modeling Uncertainty in Engineering

Three important ingredients have to be observed in uncertainty analysis in engineering. First, there
is reality (with materials, soils etc.). Second, there is the model of reality (formulated in math-
ematical terms and containing physical laws and constitutive equations). Third, correspondence
rules (prescribing how to translate one into the other) are needed. The physical model establishes
what are the state variables and what are the material constants, the parameters to be observed.
Once this has been decided, the values of the parameters have to be determined from information
extracted from the real world and will serve as input in the physical model. This plus the design
of the structure enters in numerical computations in the form of an input-output model Y = ϕ(X)
where X are the input parameters, ϕ is the model function, and Y is the output. Both X and ϕ
are uncertain, and the issue is the propagation of this uncertainty to the output Y . Apart from
providing insight into the behavior of the structure, the model output should provide a design that
works, reliable guidelines for action, and aids for decision making.

Models of the data uncertainty should reflect and incorporate the level of information available on
the data and, second, must be able to propagate it through numerical computations and deliver an
output whose uncertainty is formulated in the same terms. In addition, the uncertainty models need
correspondence rules themselves, that is, well-defined semantics. A further aspect that has to be
taken into account is how the information on the uncertainty of different parameters is combined—
this refers to modeling the dependence of variables as well as the combination of information from
different sources. For example, in a sum A+B of two parameters A and B, will the joint uncertainty
be the smallest interval containing all realizations a+b, or do we believe that extreme combinations
of realizations a+ b are less probable than those near the standard values? The first choice implies
adherence to the axiomatics of interval arithmetic, the second to the axiomatics of probability
theory. Thus three aspects of the modeling of uncertainty are isolated:

− Definition and axiomatics: How is uncertainty described and what are the combination rules?

− Numerics: How is uncertainty propagated through the computational model?

− Semantics: What is the meaning of the results—what do they say about our conception of
reality?

There are two major categories of uncertainty: model uncertainties and parameter uncertainties,
the latter encompassing the uncertainty of the data used to determine the parameter values.

Model uncertainties. The choice of the structural model is one of the central engineering decisions
to be made. For example, for the description of the soil, there are continuum models and granular
models, there are two- and three-dimensional models, there are multi-phase models (solids, liquids,
gases), and so on. The next point is the adequate selection of state variables and parameters
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(constant or not). In engineering, failure of a structure is described by the so-called limit state

function that separates the safe states from the unsafe states. The choice of the limit state function
is again an engineering decision. For example in geotechnics, is failure due to bounds exceeded by
average values of the total loads or due to localized disturbances?

Parameter uncertainties. Parameter variability can be attributed to a large number of causes.
There are random fluctuations, lack of information, random measurement errors, but also system-
atic measurement errors (deriving, e.g., from uncontrollable changes of the properties of the soil
material caused by its extraction in bore holes before being analyzed in the laboratory). There are
fluctuations due to spatial inhomogeneity, and errors made by assigning parameter status to state
variables. This is one of the essential and often unavoidable errors in engineering, because models
typically are valid in certain ranges only. If the state of the structure exits the intended range,
constants may turn into variables depending on external forces (for example, the friction coefficient
of most materials is approximately constant for small loads, but starts becoming a function of the
internal stresses for larger loads). Finally, there is variability arising from the fact that parameters
have to carry the burden of model insufficiency. The available information on data uncertainty may
range from frequency distributions obtained from large samples, values from small samples or single
measurements, interval bounds, to experts’ point estimates and educated guesses from experience.

Failure probability. Traditionally, engineers have dealt with uncertainty by employing safety fac-

tors. That is, the traditional codes would require that the load carrying capacity of the structure
exceeds the design loads by a certain factor > 1, typically 1.35 for permanent loads (such as dead
weight) and 1.5 − 2.0 for temporary loads. These factors have been negotiated in the committees
of standards. This state of affairs has been considered as unsatisfactory: no information about
the actual distance to failure can be extracted from such a procedure. Based on the desire for a
more analytical description of the uncertainties, engineering codes have been put on a probabilistic
foundation, starting with the pioneering work of (Freudenthal, 1956), (Bolotin, 1969) and others in
the 1950s. Under this point of view, every relevant parameter of the engineering model is a random
variable. There is no absolute safety, but rather a probability of failure.

To make it more precise, let the vector R comprise all random variables describing the resistance
of a structure, S the loads and denote by g(R,S) the limit state function (that is, g(R,S) < 0 means
failure, g(R,S) > 0 signifies a safe state). Then pf = P (g(R,S) < 0) is the failure probability;
R = 1 − pf is the reliability of the structure. To determine the probability pf , the types and
parameters of the probability distributions of R and S are needed. This multiplies the number of
parameter values that have to be provided by the designing engineer: each model parameter comes
with a distribution type and a set of (uncertain) distribution parameters. Actually, the current codes
employ critical values Rk and Sk (certain percentiles of R and S) and partial safety factors γR and
γS , so that the designing engineer has to verify a relation of the type Rk/γR ≥ γSSk. In theory,
the critical values and the partial safety factors are computed in such a way that this inequality
holds if and only if pf attains a certain required value pfr. In practice, γR and γS are not computed
but rather prescribed in the codes. Starting with the 1980s and 1990s, the European codes have
been changed into probability based codes. By now, this is the standard in civil engineering (see
e.g. EN 1990:2002 (Eurocode, 2002)). In addition, risk analysis and risk management have become
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a major ingredient in construction and project management. Especially calls for tender by public
organizations ask the contractor to supply a risk analysis together with the proposed design.

The civil engineering codes require that the designed structure obtains an instantaneous proba-
bility of failure of pf = 10−6 and a long-term failure probability of pf = 10−5. To credibly estimate
tail probabilities of such a small magnitude, a lot of information is needed. Problems with the
notion of failure probability, its meaning and practicability have been discussed at many places,
e.g., (Elishakoff, 1999; Fellin, Lessmann, Oberguggenberger and Vieider, 2005).

Imprecise probability models. As described above, there are many types of uncertainties in an
engineering model. It has been questioned whether a purely probabilistic approach is capable of
catching all aspects, for example, ignorance or fluctuations due to systematic model errors. In
addition, large samples allowing a frequentist assessment of data are rarely available. (Due to high
costs, sample sizes in laboratory experiments or soundings in soil investigations are usually small.)
However, what is generally known about a model parameter is a central value and a coefficient or
range of fluctuation. In geotechnics, geologists can provide interval estimates of soil parameters; a
geological report in tunneling may deliver rock classes and interval probabilities for their occurrence.

The uneasiness about the probabilistic safety concept and the desire for models of the data
uncertainty that reflect and incorporate the level of available information led to the search for
alternative concepts in the engineering community. On the one hand, probabilistic models and
probabilistic reasoning were considered as too tight a concept. On the other hand, engineering
practice shows that interval estimates should be incorporated in the framework of uncertainty
analysis. Here is a short list of concepts under consideration: fuzzy sets, evidence theory, interval
analysis, interval probability, random sets (random sets can bee seen as a framework bridging the
gap between probability and interval analysis and admitting easily accessible visualization tools such
as probability boxes), upper and lower previsions, clouds, info-gap analysis, ellipsoidal modeling,
anti-optimization, and more. A long list of references has been compiled in (Oberguggenberger,
2011). To subsume all these different approaches, the term Imprecise Probability has been introduced
(Walley, 2000; Augustin, Coolen, de Cooman and Troffaes, 2014).

3. Models of the Uncertainty

3.1. Definitions

In this section we shall focus on describing the main theories of uncertainty in the univariate case of
a single parameter. The following convention will be in use throughout the paper: parameters will
be denoted by upper case letters, e.g. A, while corresponding lower case letters, such as a, will be
reserved for their realizations. The description of the semantics is deferred to the next subsection,
except for the straightforward first two cases.

Deterministic values. The simplest approach is what in engineering terminology usually is called
deterministic description, that is, the parameter A is described by a single value a. The semantics is
simply that a is an expert estimate (or educated guess). Clearly, possible variations are not modeled
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in this approach, though their influence can be assessed to some extent by a classical sensitivity
analysis.

Intervals. The next level in modeling uncertainty is interval analysis. The uncertainty of the input
A is described by an interval [aL, aR], signifying bounds in terms of a worst/best case assumption.
In this way the total variability is captured, but no detailed information on the distribution of the
uncertainty is provided.

Probability. The most informative, but also most stringent description of the uncertainty of a
parameter A is by means of probability. If the probability distribution is given by a density pλ(a),
the probability that the realizations of the parameter A lie in a set S is

P (A ∈ S) =

∫

S

pλ(a) da.

The notation pλ indicates that, usually, the probability distributions arise as members of a class of
distributions which in turn are parametrized by parameters λ. For example, the class of Gaussian
normal distributions N (µ, σ2) is given by the Gaussian densities pλ(a) with parameters λ = (µ, σ),

pλ(a) =
1√
2πσ

e−
(a−µ)2

2σ2 .

Thus the complete specification of a probability distribution requires determination of the type it
belongs to as well as the values of its parameters.

Sets of probability measures. A central idea in relaxing the precision inherent in a probabilistic
model is to replace the single measure by a set of probability measures, a family M = {pλ : λ ∈ Λ}
where the parameter λ ∈ Λ specifies each participating single measure. A set of probability measures
defines lower and upper probabilities according to the rules

P (A ∈ S) = inf{P (A ∈ S) : P ∈ M},
P (A ∈ S) = sup{P (A ∈ S) : P ∈ M}.

The lower probability is the greatest lower bound of all probabilities that are assigned to the event
A ∈ S by choosing one of the probability measures from the set M (if attained, it is the minimum
of those values). Similarly, the upper probability is the least upper bound of such probabilities
(if attained, it is the maximum of those values). A frequently encountered instance of a set of
probability measures arises from parametrized probability distributions whose statistical parameters
are not singletons, but vary in intervals. For example, one might think of a family of Gaussian
variables with means µ from an interval [µ, µ].

As most of the models of uncertainty, the two subsequent theories—random and fuzzy sets—can
be seen as special prescriptions for obtaining sets of probability measures.

Random sets. A finite random set, also referred to as a Dempster-Shafer structure, is given by
finitely many subsets Ai, i = 1, . . . , n of a given set A, called the focal elements, each of which
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comes with a probability weight mi = m(Ai),
∑

m(Ai) = 1. The general case of an infinite number
of focal elements can be treated as well; the concept of a set-valued random variable being the
defining notion (see Subsection 3.2).

In the Dempster-Shafer approach (Shafer, 1976), the random set allows one to define a degree
of belief γ(S) and a degree of plausibility η(S), respectively, that the realizations of the parameter
A lie in S by

γ(S) =
∑

Ai⊂S

m(Ai) , η(S) =
∑

Ai∩S 6=∅

m(Ai). (1)

A random set can also be interpreted as a prescription for a set of probability distributions. Denote
by M(Ai) the totality of all probability measures supported by Ai, that is, a probability measure
P on the underlying set A belongs to M(Ai) if P (Ai) = 1. The set of probability measures induced
by the given random set is

M = {P : P =
∑

m(Ai)Pi, Pi ∈ M(Ai)}. (2)

One can show that the corresponding lower and upper probabilities coincide with the degrees of
belief and plausibility, respectively. That is, for any (measurable) subset S of A, it holds that

P (S) = γ(S) , P (S) = η(S). (3)

Fuzzy sets. Fuzzy sets can be viewed as ordered families of sets or as membership functions. It
is simplest to describe the ideas by means of the special case of a fuzzy real number A. From the
first point of view, A is a family of parametrized intervals. The parametrization is done in terms of
levels α, 0 ≤ α ≤ 1. Each level α has a corresponding interval Aα so that Aβ ⊂ Aα if α ≤ β. Thus
the intervals are stacked and can be depicted by their left/right contour functions. More generally,
one could allow the Aα to be arbitrary, stacked subsets of a given set of objects under investigation
(complex numbers, vectors, matrices, functions or the like).

In the second approach, the contour function is taken as the primary object, and a fuzzy set A
(over the real numbers) is just a map from the real line to the interval [0, 1], assigning to each real
number a a value πA(a) ∈ [0, 1]. This value may be interpreted as the membership degree to which
a belongs to the fuzzy set A, or in the language of parameters, as the degree of possibility that
the parameter A takes the value a. In classical set theory, the membership degree is either 0 or 1;
fuzzy set theory permits gradual membership as well. The intervals from the first interpretation
are now the α-level sets Aα = {a : πA(a) ≥ α}. In analogy to the situation in probability theory,
one can introduce a possibility measure on the underlying set, defining a degree of possibility for
each subset by πA(S) = sup{πA(a) : a ∈ S}, giving the degree of possibility that the parameter A
takes a value in S. The possibility measure is monotone, i.e., πA(S) ≤ πA(T ) if S ⊂ T . Possibility
measures are actually in one-to-one correspondence with fuzzy sets; given a possibility measure π,
its evaluation on singletons defines the membership function of a fuzzy set: πA(a) = π({a}).

Lower and upper previsions. In the probabilistic setups discussed so far, probability P is the
fundamental quantity. The outcomes of a random variable X can be described by their probabilities

REC 2016 - M. Oberguggenberger

46



Analyzing Uncertainty in Civil Engineering

P (X ∈ S). The expectation E(X) and the moments E(Xm) are derived quantities, e.g., in terms
of a probability density p(x):

E(X) =

∫

xp(x) dx, E(Xm) =

∫

xmp(x) dx.

Conversely, the probability of an event S can be viewed as the expectation of its indicator function
X(x) = 1S(x), which equals one if x belongs to S and zero otherwise: P (S) = E(1S). This opens the
way to setting up a theory based on expectations of random variables as fundamental quantities.
Actually, the approach is more general, as one may admit smaller or larger sets of random variables,
now called gambles. A linear prevision, as introduced by (de Finetti, 1970) is a linear functional E,
assigning to each gamble a value between 0 and 1. The extension to interval-valued previsions, see
e.g. (Walley, 1991), can be done as follows. The basic gambles are given by a random variable X
and a number of functions f1(X), ..., fm(X) of it. Lower and upper previsions are functionals on the
set of gambles with E(fi) ≤ E(fi). Various types of information can be modeled by means of lower
and upper previsions. For example, if 1S is the indicator function of an event S, then the previsions
E(1S) and E(1S) can be regarded as lower and upper probabilities of the event S. If fi(X) = X,
then E(fi) and E(fi) are bounds on the mean value of the corresponding random variable.

For computing new previsions E(g) and E(g) of a gamble g(X) from the available information,
natural extension is used which can be written as the optimization problem

E(g) = min
p

∫

g(x)p(x)dx, E(g) = max
p

∫

g(x)p(x)dx

subject to

p(x) ≥ 0,

∫

p(x) dx = 1, E(fi) ≤
∫

fi(x)p(x)dx ≤ E(fi), 1 ≤ i ≤ m. (4)

Here the minimum and maximum are taken over the set of all possible probability density functions
p(x) satisfying conditions (4).

3.2. Semantics

As outlined in the introduction, the interpretation of a theory is an essential ingredient for achieving
an adequate translation from model into reality and back. Needless to say that the assertions made
by a model become meaningful only in the context of the underlying semantics. Different semantics
imply different meanings. One has to be aware of the interpretations used when comparing assertions
made by different authors, all the more so as often the same vocabulary is employed for notions
that differ in the various interpretations.

Probability. The interpretation of probability has been the subject of scientific dispute for cen-
turies; see (Fine, 1973) as an encompassing reference. The most prevalent and important semantics
in engineering practice are:

1. Classical probability, based on principles like the principle of non-sufficient reason would, in
colloquial terms, determine the probability of an event S as the fraction of favorable cases
among the possible cases.
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2. Frequentist probability, based on the idea of random occurrence of an event in a sequence of
independent trials, would approximate the probability of an event S by its relative frequency.

3. Subjective probability is meant to be a measure of personal confidence. It can be assessed by
introspection and/or elicitation through experts.

Example: As an illustration, let us assess the probability p of throwing a six with a dice. If
nothing is known about the dice, there is no sufficient reason to assume that it is biased. Thus
the classical probabilist would assess the probability as 1 (favorable outcome) over 6 (possible
outcomes), hence p = 1/6. A frequentist person would repeatedly roll the dice a large number of
times and use the fraction of sixes among all results as an estimate for the probability. (If the dice is
indeed unbiased and N is large, say N = 10000, the fraction will be close to 1/6.) The subjectivist
would guess the probability as p = 1/6, if he/she has enough trust into the unbiasedness of the
dice. If the subjectivist is willing to bet 1 monetary unit for a gamble that rewards him/her with
6 units when a six is thrown, an observer could infer that the subjectivist believes the probability
p to be at least 1/6.

In its applications, classical probability often takes the form of combinatorial probability. Aside
from the obvious application in computing the chances in a lottery, it is often the means by which the
standard probability distributions are derived, like the binomial or geometric distributions. Another
example would be the exponential distribution for the survival time of a radioactive particle which
is an immediate combinatorial consequence of the law of radioactive decay.

The central idea of frequentist probability is the sample with its statistical parameters. It
is viewed or designed as a sequence of independent realizations of the random variable whose
distribution parameters have to be determined—keeping the boundary conditions constant. The
relative frequencies of the realizations of an event are taken as estimates for the probability of the
event. The sample parameters like sample mean or sample variance correspond to moments of the
random variable—expectation value and variance in this case. From there, the parameters of the
distribution of the random variable can be estimated. This is one of the wide-spread procedures for
fitting models based on the frequentist interpretation.

From the viewpoint of the philosophy of science, the frequentist interpretation carries a number
of problems, among them the question whose probability is realized in the sample (of the random
variable, or of the experiment which was designed to measure it—a possible answer to this question
has been given by Popper with his notion of propensity (Popper, 1957)). A pragmatic approach with
a cautious and critical attitude has proven to provide a successful basis for probabilistic models in
science and engineering.

A further issue of debate has been the fact that the decision aids mentioned above provide
meaningful evaluations only if the sample size is sufficiently large, a condition which remains vague,
and in civil engineering—with often very small sample sizes—is frequently lacking. This is the point
where subjective probability enters engineering. When such a switch of interpretation is undertaken,
we believe that it is the responsibility of the engineer to put it in the open. Otherwise the meaning
of probability in the final result is lost or at least obscured.

Turning to subjective probability, we first mention that schemes have been developed that allow
one to deduce it from decision theoretic principles, assuming rational behavior of the agent. This
has been done to obtain operational ways of extracting the personal probability assessment of an
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agent/decision maker quantitatively. One way promoted by (Savage, 1954) has been the notion
of indifference price. To determine a probability of an event S, the decision maker is required to
imagine a gamble which pays one monetary unit if event S occurs and zero otherwise. The decision
maker surely would buy the gamble at the price of zero units, but surely not for more than one
unit. Raising the lower bound for the price and lowering the upper bound should eventually lead
to a price at which the decision maker is indifferent to buying the gamble or not. This indifference
price is the probability P (S) of the event. It is argued that the indifference price also equals the
minimal price P (S) at which the decision maker is willing to sell the gamble, as well as the maximal
buying price P (S).

This has been a point of critique, because real world persons do not behave strictly rational in
this sense and often lack the information to decide about the minimal selling and maximal buying
price. Thus an interval [P (S), P (S)] appears to be a more accurate description of a decision maker’s
information. This line of argument directly leads to imprecise probability, probability intervals, and
lower and upper probabilities. In practical engineering applications, elicitation of probabilities from
experts is the paradigm for obtaining subjective probabilities quantitatively. We refer e.g. to (Meyer
and Booker, 2001; Ross, Booker and Parkinson, 2002).

Finally, we should not fail to mention the Bayesian approach to assessing probability distribu-
tions. From the Bayesian viewpoint, everything is a random variable, including the parameters,
say Θ, of the distributions of the original variables, say X, to be assessed. The Bayesian approach
has interpretations both in the frequentist as well as the subjective setting. In the civil engineering
literature, it has been found useful for combining expert knowledge with sample data (Martz and
Waller, 1982; Rackwitz, 2000). The expert knowledge may be based on known frequencies or on
subjective estimates and is encoded in the prior distribution of the parameter θ. Sample data x (or
again expert estimates obtained in situ) are then used to produce a posterior distribution of the
distribution parameter θ according to Bayes’ rule, loosely stated as

p(θ|x) = p(x|θ)p(θ)
p(x)

.

The data vector x may have length 1, or may consist in a large sample of size n, so that the
Bayesian procedure may accommodate single estimates up to sample sizes satisfying frequentist
requirements. The assessment of the distribution of the original variable X is completed by the
Bayes estimate of its distribution parameter θ̂ =

∫∞
−∞ θ p(θ|x) dθ.

Sets of probability measures. Sets of probability measures can arise both in a frequentist as well as
in a subjectivist approach. In a frequentist setting, sets of probability measures arise as sets of fitted
distributions: in fact, confidence regions for the distribution parameters imply that parametrized
families of distributions are employed. Further, robust statistics is based on distributions neighboring
a given distribution, see e.g. (Huber, 1981).

As we have just seen above, sets of probability distributions are inherent in Bayesian statistics
(each parameter value θ defines a distribution of the original variable). In order to avoid implausible
determinations due to the choice of a prior distribution, families of prior distributions have been
employed (robust Bayesian methods), as well as fuzzy prior distributions.
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Further, referring to the decision theoretic foundation of probability, replacing the indifference
price by an interval [P (S), P (S)] leads to interval-valued probabilities, which again imply that a
set of probabilities is considered.

Random sets. In a frequentist interpretation, this might correspond to a sample of size n of interval
data for a parameter A, the probability weight being approximated by the relative frequency. The
difference to a histogram then is that the focal elements Ai may overlap. In geotechnical engineering,
for example, interval data arise as ranges of rock parameters associated with certain rock classes.
These rock classes in turn may be the outcomes, obtained with a certain frequency from in situ
measurements. In a subjectivist interpretation, the focal elements Ai may be (possibly conflicting)
estimates given by different experts and the weights might correspond to each expert’s relative
credibility.

Random sets have turned out to be useful for bracketing probability estimates given by different
sources as well as for combining information of different type, due to the observation that every
histogram, every interval and every fuzzy set can be viewed as a random set, without a need for
artificial transformations (Goodman and Nguyen, 2002; Kreinovich, 1997).

A good visualization of a random set can be given through its contour function on the basic
space A, assigning each singleton a its plausibility: a → P ({a}). It is simply obtained by adding
the probability weights pi of those focal elements Ai to which a belongs.

When A is the set of real numbers, the random set defines a so-called probability box which is
bounded by the upper and lower distribution functions

F (x) = P (−∞, x], F (x) = P (−∞, x], (5)

see (Ferson, Kreinovich, Ginzburg and Myers, 2003). Any distribution function F (x) that arises
from one of the probability measures from the set M (cf. Equation (2)) is necessarily bounded by
the probability box: F (x) ≤ F (x) ≤ F (x). Thus the probability box is a good representation of the
variability of a quantity described by a random set.

We now turn to the more general case of infinite random sets. For most applications in reliability
theory it suffices to consider closed random sets defined on the probability space Ω = [0, 1] with
the uniform probability distribution. Recall that the uniform probability P on the interval [0, 1]
assigns to each subinterval of [0, 1] its length, that is, P [α, β] = β − α for 0 ≤ α ≤ β ≤ 1.

Thus—in our narrower sense—a random set is a function [0, 1] → A : α → Aα where each Aα

is a closed subset of the real line A as basic space. Often, the focal elements Aα are just closed
intervals. In the multivariate case, we would take the d-dimensional unit hypercube Ω = [0, 1]d as
probability space and the focal elements as closed subsets of d-dimensional coordinate space.

In generalization of formulas (1) and (3) we define the plausibility of an event S as

P (S) = P (α ∈ [0, 1] : Aα ∩ S 6= ∅) =
∫

{α∈[0,1]:Aα∩S 6=∅}
dα (6)

and the belief

P (S) = P (α ∈ [0, 1] : Aα ⊂ S) =

∫

{α∈[0,1]:Aα⊂S}
dα, (7)
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and the upper and lower distribution functions are given by formula (5). They form a probability
box which may be viewed as the envelope of all cumulative distribution functions encoded in the
random set.

Examples: (a) Every Dempster-Shafer structure can be viewed as an infinite random set, in
which the focal elements Si arise as certain Aα with repetition. For this purpose, we subdivide the
interval [0, 1] into n subintervals of length pi and put

Aα = A1, 0 ≤ α ≤ p1, Aα = A2, p1 < α ≤ p1 + p2,

and so on until Aα = An, p1 + p2 + . . .+ pn−1 < α ≤ 1.
(b) Fuzzy sets. every normalized fuzzy number can be seen as a random set; the sets Aα are just
the α-level sets. It is not difficult to prove that the possibility measure of a subset S of the real line
coincides with its plausibility: P (S) = sup{π(x) : x ∈ S}.
(c) Random variables. A random variable X can be reconstructed as a random set on [0, 1] by
putting Aα = F−1(α) where F (x) is the distribution function of the random variable and F−1 its
inverse or, more generally, pseudo-inverse. The plausibility and belief of an event B coincide with
the probability of the outcome P (X ∈ B).
(d) Random sets constructed from Tchebycheff’s inequality. A major application of the tools out-
lined above is the construction of random sets from minimal information on a random variable X.
Let µ = E(X) be its expectation and σ2 = V(X) its variance. Tchebycheff’s inequality asserts that

P (|X − µ| > dα) ≤ α with dα = σ/
√
α (8)

for α ∈ (0, 1]. Let Aα = [µ−dα, µ+dα]. By Tchebycheff’s inequality, the probability of Aα is greater
or equal to 1 − α, while the probability of its complement Ac

α is less or equal to α. Thus Aα will
contain approximately a fraction of 1− α of the realizations of the random variable X, e.g., A0.05

contains about 95%, A0.10 contains about 90%, etc. This is a conservative, non-parametric estimate
valid for whatever distribution of the random variable X. It encodes the minimal information
that can be extracted from the expectation and the variance of a random variable without further
parametric assumptions. We formalize this information as an infinite random set (actually a random
interval) α → Aα on the space Ω = (0, 1], equipped with the uniform probability distribution. Of
course, Tchebycheff’s inequality can be replaced by narrower estimates if more is known about the
distribution of the given random variable, for example, symmetry or unimodularity.

Fuzzy sets. In engineering and in risk analysis applications, probabilistic models have been crit-
icized as requiring more input from the designing engineer or the decision maker than could be
plausibly provided—or that would be reasonably required for a rough estimate. In particular, the
requirement that probabilities have to add up to 1 causes the problem that probabilities of events
change when additional events are taken into consideration. Further, probabilities have to be set
up in a consistent way, e.g. satisfying the rule p(S ∪ T ) = p(S) + p(T ) − p(S ∩ T ) and thus do
not admit incorporating conflicting information (in the sense that the intersection of an event S
with its complement can never have positive probability). Fuzzy set theory appears to provide a
resolution of these difficulties in as much as it admits much more freedom in modeling. Further,
fuzzy sets may be used to model vagueness and ambiguity.
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The notion of possibility provides an interpretation for a fuzzy set and an operational method of
constructing it, as we wish to argue here. We imagine that a fuzzy set describing the uncertainty
of a real-valued parameter has to be designed. The procedure proposed here is based on a scale
0 ≤ α ≤ 1. The linguistic meaning of the α-values is specified verbally by the designing engineer
or the decision maker in advance, but then remains fixed during the whole modeling process (for
example, α = 1 signifies the standard value of the parameter, α = 2/3, 1/3, 0 might indicate high,
medium, and low degree of possibility).

One would start by specifying the standard value aS of the parameter, in engineering terminology
often referred to as the deterministic approximation and assign degree of possibility α = 1 to
it. Next, possible deviations of the parameter from the standard value are taken into account,
corresponding to decreasing degree of possibility, until the minimal and maximal values, which are
assumed with very small degree of possibility, are reached at level α = 0.

The notion of possibility can be given an operational meaning, using the language of subjective
risk assessments. Thereby, it is envisaged that the risks leading to parameter fluctuations at the
corresponding possibility level are established in an analysis of scenarios. The level sets correspond
to the bounds a parameter attains under a certain risk level.

There is also a normative approach which uses pre-shaped, parametrized membership functions
as well as the suggestion to use elicitation procedures; see (Dubois and Prade, 1988; Ross, Booker
and Parkinson, 2002) for further details.

An alternative way of establishing the semantics of possibility is to start from the notion of
potential surprise and to define possibility as its complementary notion or as a transformed quantity
thereof (Neumaier, 2003). For a decision-theoretic foundation, see (Dubois, Prade and Sabbadin,
2001), for possibility as a transformation of probability, see (Dubois, Prade and Sandri, 1993).

Lower and upper previsions. A behavioral interpretation of lower and upper previsions has been
elaborated by Walley (Walley, 1991), who also set up an axiomatic system of lower and upper
previsions, derived from certain principles, such as avoiding sure loss. Previsions are functionals
defined on gambles, thus the betting analogy (already used in the operational definition of subjective
probability) comes in naturally. The lower prevision E(g) of a gamble g(X) is the supremum buying
price (the largest sum the decision maker is willing to pay for the gamble), while the upper prevision
E(g) is the infimum selling price. Lower and upper probabilities of events are obtained as lower and
upper previsions of their indicator functions. In contrast to subjective probability (which would
translate into linear previsions), the decision maker is not obliged to end up with a single number
(the indifference price), but has the freedom to remain undecided about the probability of an event,
within the bounds given by its lower and upper probability.

3.3. Axiomatics

Referring to probability theory, it has been emphasized by (Popper, 1994, Section 71) that a formal
mathematical system of axioms and postulates is required in order to approach the problem of
relations between the different interpretations of probability. All the more so, this applies to the
problem of comparing the different theories of uncertainty. By now, all these theories can be based
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on appropriate axioms, the most well known being the Kolmogorov axioms of probability and the
Choquet axioms of capacities.

We do not give a detailed exposition of the axioms here, but just highlight a few of them, showing
that they lead to different combination rules in the various models of uncertainty. This may serve
as a means of distinguishing the models as well as a guiding criterion to decide which model should
be selected for what purpose.

The axioms fix the algebraic properties of the corresponding set functions. For example, proba-
bility measures p define additive set functions, that is,

p(S ∪ T ) = p(S) + p(T )− p(S ∩ T )

for sets S, T . This is not true of possibility measures π, which in turn satisfy

π(S ∪ T ) = max{π(S), π(T )}.

Both probability measures and possibility measures are special cases of plausibility measures η
which enjoy the more general property

η(S ∪ T ) ≤ η(S) + η(T )− η(S ∩ T ).

All these set functions are contained in the largest class of monotone set functions µ, also called
fuzzy measures, characterized by the property

µ(S ∪ T ) ≥ max{µ(S), µ(T )}.

Suitably completing these algebraic properties to full systems of axioms, it is actually possible
to characterize all these type of measures (and many more). The following hierarchical relations
obtain:

probability → plausibility
possibility → plausibility
plausibility → monotonicity.

This means that every probability measure is a plausibility measure, and so on (thus plausibility
theory is more general than probability theory, in the sense that it admits a larger class of measures).
Probability measures and possibility measures are in no implication relation in either direction.

Alternatively, if one starts from the notion of random sets, probability would correspond to
singletons as focal elements, possibility to nested focal elements, and plausibility to arbitrary focal
elements.

3.4. Numerics

Practically all engineering models are input-output systems. Given certain input values (model
parameters, initial conditions, dimensions, etc.) the model produces output values (displacements,
stresses, costs, etc.). In other words, the model is a function ϕ that assigns to the input data
A certain output values ϕ(A). Both A and ϕ(A) may be multidimensional (for simplicity, we
shall consider ϕ(A) as one-dimensional in the sequel—corresponding to a single component of a
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multidimensional output). Often, the function ϕ is a computer code, in which case the output is
obtained as a numerical approximation. If the input data consist of a single, deterministic data
value, then the model produces a uniquely determined output. If the input data fluctuate, so does
the output. If the fluctuation of the input is described by one or the other theories of uncertainty
discussed so far, the fluctuation of the output should be captured on the same terms. This is the
issue of this section: how is data uncertainty propagated through an input-output system?

Deterministic values. If a is an expert estimate of some input parameter A, the output is just
the value ϕ(a) of the function ϕ at a. In this framework, the effects of the uncertainty of the input
parameters can still be assessed by performing a sensitivity analysis. In its classical form, sensitivity
analysis means the study of the derivatives of the function ϕ at the fixed value a of interest, that
is, the linear approximation to the change in output when the input parameter a is changed to a
nearby value b:

ϕ(b) ≈ ϕ(a) +
dϕ

da
(a)(b− a), ϕ(b) ≈ ϕ(a) +

n
∑

i=1

∂ϕ

∂ai
(a)(bi − ai)

(left: univariate case; right: n-dimensional parameter a = (a1, . . . , an)), where the approximation

error is of order |b − a|2. The sign and size of the partial derivative ∂ϕ
∂ai

(a) is an indicator of the

influence of the i-th component of the parameter a on the output (provided all components ai are
of the same scale).

Intervals. If A is an interval, the functional evaluation ϕ(A) results in a set of values (an interval,
if ϕ is continuous and one-dimensional). In general, both A and ϕ(A) could be sets of arbitrary
geometry. In interval arithmetic, one would bound these sets by the smallest multidimensional
intervals (boxes) that contain them (see (Neumaier, 1990)). In any case this approach represents
the full range of the possible output values without further fine structure.

Probability measures and random sets. Given a single probability measure and a (measurable)
map ϕ, the output probabilities are determined through the induced image measure, that is,
P (ϕ(A) ∈ S) = P (A ∈ ϕ−1(S)). Though the distribution of the random variable ϕ(A) can be
computed by this prescription in principle, this is practically impossible as soon as ϕ attains a
rather moderate complexity. The numerical method for approximating the output distribution by
means of an artificially created sample is Monte Carlo simulation.

In case the uncertainty of the input is modeled by a set M of probability measures, the map
ϕ induces a set of probability measures as well, namely the collection of all image measures,
obtained from M under this map. The computation of lower and upper probabilities turns into an
optimization problem.

If the input is described by a random set with focal elements Ai, i = 1, . . . , n and probability
weights m(Ai), the output is again a random set which consists of the focal elements ϕ(Ai), i =
1, . . . , n, supplied with the original weights m(Ai) (or sums of weights in case some of the image sets
ϕ(Ai) coincide). In case the sets ϕ(Ai) are intervals, their boundaries can be found by optimization
(minimizing/maximizing the function ϕ on Ai). The determination of lower and upper probabilities
is then a combinatorial task involving the formulas for belief and plausibility.
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Fuzzy sets. The question of propagating the uncertainty of a fuzzy input A through a function
ϕ needs some more explication. If the input is a fuzzy set with membership function πA(a), say,
the output will also be a fuzzy set, described by a membership function πϕ(A)(b). According to the
Zadeh extension principle (Zadeh, 1975), it is given by

πϕ(A)(b) = sup {πA(a) : ϕ(a) = b}.

In case the input consists of a vector of parameters A = (A1, . . . , Am), the extension principle takes
the form

πϕ(A)(b) = sup {min (πA1(a1), . . . , πAm
(am)) : ϕ(a1, . . . , am) = b}.

Note that this comes naturally from the possibility-theoretic interpretation: to compute the degree
of possibility that ϕ(A) takes the value b, one has to look for all combinations a1, . . . , am producing
the value b; each single combination gets the smallest possibility among its participants, while b gets
the supremum of all possibility degrees that can be obtained in this way. In case ϕ is continuous
and the α-level sets of A1, . . . , Am are compact (0 < α ≤ 1), this corresponds exactly to computing
the range of the function ϕ on each α-level set,

ϕ(A)α = ϕ(Aα) , respectively, ϕ(A1, . . . , Am)α = ϕ(Aα
1 , . . . , A

α
m).

When the Aα
j are intervals, in addition, the set ϕ(A1, . . . , Am)α is an interval as well. The compu-

tation of its boundaries is then a task of global optimization: finding the minimum and maximum
value of ϕ on the set Aα. In any case, the procedure is consistent: if the input data are structured
as stacked intervals, so is the output.

3.5. The multivariate case

In principle, the multivariate case, that is, the case when the input A has several components
A1, . . . , An, has been covered by what has been said above—all applies to multidimensional intervals,
random sets, fuzzy sets and multivariate distribution functions. However, the issue is how to model
mutual dependence, correlation, interaction, influence of the different components. In addition, the
task remains to model infinitely many components, as arising in spatial fields or temporal processes,
when the parameters are functions of space and/or time.

There is a rather well established notion of independence in probability theory: two random
variables are independent when their joint distribution function is the product of the individual
(marginal) distribution functions. The situation is also clear in interval analysis: two parameters
taking interval values are non-interactive when their joint behavior is described by the product
of the two intervals (a rectangle), and interactive when their joint range is a proper subset of the
product interval. This idea extends to fuzzy sets: Two fuzzy sets are non-interactive, when all their
α-level sets are rectangles.

More precisely, given d univariate fuzzy sets A1, . . . , Ad, the non-interactive joint fuzzy set has
the α-level sets

Aα = A1
α × · · · ×Ad

α, α ∈ (0, 1].

Interactivity can be modeled by certain parametric restrictions on the α-level sets. To avoid combi-
natorial complications, consider interactivity of at most two out of the d variables. Since an α-level
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set of the form Ai
α×Aj

α is a homothetic image of the unit square, it suffices to give the definitions for
A1

α = A2
α = [0, 1]. Interactivity can be modeled by replacing the unit square by a diamond-shaped

region, symmetric around one of the diagonals. Let 0 ≤ ρ ≤ 1 and define the points P1, . . . , P4 by

P1 = (ρ/2, ρ/2), P2 = (1− ρ/2, ρ/2),
P3 = (1− ρ/2, 1− ρ/2), P4 = (ρ/2, 1− ρ/2).

Interactivity of positive degree ρ is modeled by taking the rhombus with corners (0, 0), P2, (1, 1), P4

as joint level set, while interactivity of negative degree −ρ is modeled by the rhombus with corners
(0, 1), P1, (1, 0), P3 as joint level set. This is a straightforward way of introducing parametric
interactivity in fuzzy sets. Of course, one can imagine replacing the diamond shapes by other
geometric shapes.

Switching to random sets, the situation becomes more complicated. The concept of independence
splits into a number of different concepts, all coinciding when the focal elements are singletons
(i.e., when the random set is actually a scalar random variable). Random set independence is
characterized by two properties: the joint focal elements are products of intervals, and the joint
weights are the products of the corresponding individual (marginal) weights. Strong independence

is obtained when the underlying set of joint probability measures is required to consist of product
measures only. Going deeper into the structure of the underlying set of probability measures,
many more notions of independence can be considered, one of the more prominent being epistemic

independence. For further details on this, see e.g. (Fetz and Oberguggenberger, 2004).
To model dependence, the notion of copulas has gained increased attention in the past decade.

An n-dimensional copula is a multivariate probability distribution function on the n-dimensional
unit hypercube whose marginals are uniform distributions. Thus in the two-dimensional case, it is
a function C(u, v) of two variables u, v ∈ [0, 1] which satisfies

C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0, C(1, v) = v

and which is two-monotone, i.e.,

C(u+ h, v + k) + C(u, v)− C(u+ h, v)− C(u, v + k) ≥ 0.

The joint distribution FXY (x, y) of two random variables X,Y can be reconstructed from the
marginal distributions FX(x), FY (y) by means of a copula:

FXY (x, y) = C(FX(x), FY (y)).

The point is that given the marginals FX(x), FY (y), parametric copulas can be found that produce
a joint distribution with a prescribed correlation structure. In the situation of random sets, copulas
can be used to introduce correlations on the basic probability weights.
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4. Application to an Example From Geotechnics

In this section, some of the methods will be shown at work in an example from geotechnics: an
infinite beam on a linear elastic bedding. We begin by discussing the setup and a straightforward
probabilistic model, which will be refined subsequently.

4.1. Deterministic/probabilistic dimensioning

The simplest, one-dimensional model is the so-called Winkler beam, extending along the real line
with coordinate x ∈ R. The displacement u(x) is described by the bending equation

EI uIV (x) + bc u(x) = q(x), −∞ < x < ∞,

see e. g. (Bolotin, 1969, Section 61). Here EI is the flexural rigidity of the beam, b its effective
width, c the bearing coefficient of the foundation and q(x) the loading. One may imagine that the
beam describes a buried pipeline, the loading q(x) resulting from the covering soil. The parameters
EI and b of the beam may be considered as precisely known, whereas the soil properties c and q
vary in an imprecisely known fashion. We will study the singular boundary value problem for the
standardized equation

uIV (x) + 4k4u(x) = p(x), −∞ < x < ∞ (9)

with bc/EI = 4k4, p(x) = q(x)/EI, requiring that the solution should remain bounded at ±∞. In
case k is a constant and p(x) is an integrable function, both deterministic, its unique deterministic
solution is given by

u(x) =

∫ ∞

−∞
G(x, y) p(y) dy

in terms of its Green function

G(x, y) =
1

8k3
e−k|x−y|( sin k|x− y|+ cos k|x− y|).

In case the load q(x) ≡ q (and hence p(x) ≡ p) is constant, the displacement is constant as well
and simply given by

u(x) ≡ p

4k4
=

q

bc
.

For the computational examples to follow we let the parameters vary around central moduli of
k = 10−2, p = 10−8. Approximately, this corresponds to the case of a buried cast-iron pipeline
with an effective diameter of 6 [cm], covered by about 100 [cm] of top soil (q = 10 [N/cm]) and
bedded in loosely packed sand (c ≈ 6.7 [N/cm3]). The resulting overall displacement would amount
to u(x) ≡ 0.25 [cm] in the deterministic case.

In a probabilistic design, one would assume that the input parameters are random variables.
In a standard engineering approach, one would argue that their mean values are given by the
deterministic design values; further, a coefficient of variation is assumed (for material properties,
usually around 5%, for soil parameters up to 15%, cf. (Rackwitz, 2000)). In the simple example, the
most uncertain parameters are q (mean µq = 10) and bc (mean µbc = 40); we take a coefficient of
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variation of 10%. Next, a type of distribution for the parameters has to be assumed. Both q and c
are soil- and bedding related parameters, whose values strongly depend on what actually happens
at construction site. Thus little evidence about the type of distribution is available. For the sake
of presentation, we make the assumption that both parameters are normally distributed, that is,
q ∼ N (10, 1), bc ∼ N (40, 16). Under this assumption, we can compute the probability density of
the displacement u = q/bc, see Figure 1, and read off the quantiles. For example, the probability
that the displacement is larger than 0.5 [cm] is ≈ 3.9 · 10−6.
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Figure 1. Probability density (left) and distribution function (right) of displacement under constant, but random
load.

It is quite clear that the model is too simple to be credible. In particular, the load will certainly
not be given by a single, albeit random, value along the whole beam, but will rather vary from
point to point.

This suggests describing the load as a random field q(x), x ∈ R, and thus brings us to a second
important aspect of probabilistic modeling in engineering. At each point x in space, the load q(x) is
assumed to be a random variable. To define the field, the joint distributions of the loads at any finite
number of points q(x1), . . . q(xn) should be specified. The standard assumption in soil engineering
is that the random field is homogeneous (i.e. the finite dimensional distributions are translation
invariant) and Gaussian. In this case, the field is completely specified by the mean value µq and the
second moments, i.e., the covariance COV(q(x), q(y)) for any two points x, y. Due to homogeneity,
the covariance depends only on the distance ρ = |x− y| of the points and is of the form

COV(q(x), q(y)) = σ2C(ρ)

with the variance σ2 and the so-called autocorrelation function C(ρ). A typical autocorrelation
function is of the form

C(ρ) = exp (− |ρ|/ℓ),
where ℓ is the so-called correlation length (available in the literature for different types of soil, see
e.g. (Rackwitz, 2000)).

Thus for modeling the load as a homogeneous Gaussian field, we need to provide the mean value,
the variance and the autocorrelation function. As above, the mean value is assumed to be µq = 10;
for the field variance we take σ2

q = 4. In the following, we assume a moderate correlation length of

ℓ = 100 [cm] and take bc fixed at its deterministic design value 40 [N/cm2]. A realization of the load
and the corresponding displacement is shown in Figure 2; Figure 3 (left) shows the corresponding
realization of the bending moment.
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A critical quantity for assessing the safety against failure is the maximal bending moment Mmax

in the beam, which is given by Mmax = max(EIu′′(x)). A typical failure criterion would require that
the maximal stress Mmax/W (with the section modulus W ) does not exceed the admissible stress
(corresponding to the 0.1% yield strength, that is, the stress after which 0.1% plastic deformations
remain). We drop the lengthy details and just show how Mmax would be assessed probabilistically.
To this end, a Monte Carlo simulation of N = 500 trajectories has been undertaken, yielding an
estimate for the distribution of Mmax. Figure 3 (right) shows the result; the histogram has been
extrapolated with the aid of a kernel smoother. In this way, we get the estimate P (Mmax > 6000) ≈
6.52 · 10−5, for example. We record this value for reasons of comparison with Section 4.4.
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Figure 2. Random field model: trajectories of load process (left) and corresponding displacement (right).
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Figure 3. Random field model: trajectory of bending moment (left) and simulation of maximal bending moment
(right).

The possibilities of more refined statistical methods, like confidence intervals for quantiles or robust
estimates, are left aside here, and we close our brief survey of classical probability in this example.

4.2. Fuzzy set modeling

In order to present a fuzzy model of the elastically bedded beam, we assume that the parameters
k and p are described by fuzzy numbers K and P . More generally, one could admit, e.g., loads
of the form p(x) =

∑n
i=1 aipi(x) as a combination of fixed shape functions pi(x) with parameters

ai, which in turn can be taken as fuzzy numbers Ai, i = 1, . . . , n. We adopt here the simple case
that both parameters are fuzzy constants and model the data as a non-interactive fuzzy vector
with two components (K,P ). This signifies that the joint membership function is given by the
formula π(K,P )(k, p) = min{πK(k), πP (p)}, hence the level sets are two-dimensional intervals. We
shall compute the fuzzy point values of the fuzzy response u(x) by applying the Zadeh extension

REC 2016 - M. Oberguggenberger

59



M. Oberguggenberger

principle to the solution operator

(k, p) → u(x) = Lx(k, p) =
p

4k4
,

see Subsection 4.1. By the discussion above, an α-level set of Lx(K,P ) is computed as the collection
of the values of the solutions attained when the parameters vary in the respective level sets Kα, Pα.

For the sake of exposition in the example to follow, we take both K and P as triangular fuzzy
numbers, centered around the values indicated in Subsection 4.1, namely

K = 〈12 , 1, 2〉 · 10−2, P = 〈0, 1, 2〉 · 10−8,

Then the (constant) fuzzy solution is simply given by the fuzzy number Lx(K,P ) = P/4K4. It is
depicted in Figure 4.

We observe that the fuzzy model consistently describes the fluctuations of the response in
dependence on the data variability. In addition, the α-level structure provides a good picture of the
sensitivity of the result.
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Figure 4. Fuzzy displacement u (left) and fuzzy solution (right, horizontal lines depicting α-levels) versus effect of
localization.

We now discuss a certain limitation of the (simple) fuzzy model. The semantics of fuzzy sets
allows the parameter p to vary in the range given by its fuzzy description, in the example its support
[0, 2 · 10−8]. If one permits non-constant realizations of the parameter p, the bounds predicted by
the fuzzy output may be exceeded. Indeed, assume that p jumps from 0 to 2 · 10−8 at the point
x = 0. This means that we have to solve Equation (9) with a load

p(x) =

{

0, x < 0,
p = 2 · 10−8, x > 0.

The corresponding displacement is

v(x) =

{

p
8k4

ekx cos kx, x < 0,
p

8k4
(2− e−kx cos kx), x > 0.

Taking the admissible value k = 1
2 · 10−2, it is seen that the graph of v exceeds the band described

by the fuzzy displacement with constant parameters.
This is an example of the effect, observed in other circumstances as well, that a localized

parameter fluctuation may produce a response not predicted by a simple fuzzy model. In Figure 4.2,
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the 0-level set of the fuzzy displacement is indicated by the horizontals u = 0 and u = 8, the curve
is the graph of v, and the other horizontals indicate level sets of the fuzzy displacement u for
α = 0.2, 0.4, 0.6, 0.8. Degree of possibility equal to one occurs at u = 0.25.

4.3. Random set modeling

As mentioned in Subsection 4.1, assuming that q and bc are normally distributed random variables is
rather artificial. The available information consists of a nominal value and a coefficient of variation.
One way of organizing this information is by means of a Tchebycheff random set as described in
Subsection 3.2. If the loading q, say, is preliminarily viewed as a random variable with unknown
probability distribution, but with expectation value µq and variance σ2

q , Tchebycheff’s inequality

asserts that the probability of the event {|q − µq| > σq/
√
α} is less or equal to α, where α ∈ (0, 1].

Let
Q(α) = [µq − σq/

√
α, µq + σq/

√
α].

As outlined in Subsection 3.2, we may use the Q(α) to define a random set on the space Ω = (0, 1],
equipped with the uniform probability distribution, the Tchebycheff random set arising from µq

and σ2
q .

We take up the example of Subsection 4.1 and apply this construction to the loading q with
µq = 10 and σq = 1 (from a coefficient of variation of 10%). This results in a random set Q, whose
contour function is depicted in Figure 5 (left).
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Figure 5. Tchebycheff random set for load (left) and probability box for resulting displacement (right).

In a similar way, we construct a Tchebycheff random set BC for the variable bc, using µbc = 40
and σbc = 4. To form the joint random set (Q,BC), the dependence of Q and BC has to be
modeled. To make computations easy, we settle for the so-called fuzzy set independence; that is,
the joint random set is also defined on Ω = (0, 1] with focal elements Q(α) × BC(α), α ∈ Ω (and
thus only focal elements corresponding to the same index α are combined). The random set data
can be propagated through the mapping that gives the displacement u(q, bc) = q/bc, resulting in a
random set U with focal elements U(α) = u(Q(α)×BC(α)), the set of values attained when (q, bc)
range in Q(α)×BC(α).

The evaluation of the interval bounds for U(α) requires a global optimization. It is useful to
describe the output random set as a probability box, which is bounded by the lower and the upper
distribution functions

F (x) = P (−∞, x], F (x) = P (−∞, x].

The resulting probability box for the displacement is shown in Figure 5 (right).
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The probability box immediately gives information on quantile ranges. For the event A = {U ≥
0.5}, for example, we get the probability interval [P (A), P (A)] = [0, 0.04], which is more credible
than the point estimate P (A) ≈ 3.9 · 10−6 from the Subsection 4.1 (obtained under the stringent
assumption that q and bc were normally distributed).

An even more realistic combination of the random field model with random set parameters will
be described in the following subsection.

4.4. A hybrid model

A combination of stochastic differential equations with random set parameters has been recently
worked out in (Schmelzer, 2010). This can be used in the dynamics of structures. Earthquake
induced vibrations can be modeled by stochastic processes, like colored noise, whereas uncertain
material parameters can be modeled by random intervals. We shall demonstrate a more modest
hybrid model for the elastically bedded beam. The load q will be modeled as a random field as
in Section 4.1, while the bedding parameter bc will be modeled as a random set. Of course, the
model can be generalized to higher levels by also taking the field parameters σq and ℓ as random
sets, etc. For the sake of simplicity, we shall take bc as an interval and the field parameters as in
Section 4.1, i.e., µq = 10, σq = 2, ℓ = 100. For bc we choose the interval [20, 40], which has the
previously assumed mean value for bc as its upper boundary.
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Figure 6. Hybrid model: Single interval trajectory of bending moment (left) and p-box for maximal bending moment
(right).

The resulting output will be a set-valued stochastic process; more precisely, each trajectory will
be interval-valued. Figure 6 (left) shows a single trajectory of the bending moment. In order to
assess the statistical properties of the output, a sample of trajectories has to be generated. From
there, one can compute, e.g., the upper and lower distribution functions of the maximal bending
moments in the beam. This is a critical quantity on which the failure criterion from Section 4.1 is
based. A p-box of the maximal bending moment is shown in Figure 6 (right), based on N = 500
trajectories of the field. From the list of computed values (interpolated using a kernel smoother)
one may obtain upper and lower probabilities that given limits are being exceeded, e.g.,

P (Mmax > 6000) ≈ 6.51 · 10−5, P (Mmax > 6000) ≈ 2.05 · 10−2,

P (Mmax > 8000) ≈ 0, P (Mmax > 8000) ≈ 1.21 · 10−3.
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5. Conclusion

This brief exposition presented an overview over various important aspects of uncertainty modeling,
including axiomatic, semantic, and numerical aspects. Necessarily, a lot of important additional
topics had to be left aside. Concerning families of probability measures and random sets, we mention
the differing lower/upper probabilities obtained from families of random variables versus the random
set corresponding to the family (Fetz and Oberguggenberger, 2015). Further issues are Monte Carlo
simulation of random sets and imprecise stochastic processes, as well as sensitivity analysis based on
random sets (Oberguggenberger, King and Schmelzer, 2009; Oberguggenberger, 2015). For interval
methods and their application in finite elements we refer to (Moens and Vandepitte, 2005; Muhanna,
Zhang and Mullen, 2007); for recent results on interval methods related to stochastic processes, see
(Sofi, 2015; Muscolino, Santoro and Sofi, 2016).
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editors, Statistical Modeling Analysis and Management of Fuzzy Data. Physica-Verlag, Heidelberg, pages 3–21,
2002.

Huber, P. J. Robust Statistics. John Wiley & Sons, New York, 1981.

Kreinovich, V. Random sets unify, explain, and aid known uncertainty methods in expert systems. In: J. Goutsias,
R. P. S. Mahler and H. T. Nguyen, editors, Random Sets. Theory and Applications. Springer-Verlag, New York,
pages 321–345, 1997.

Martz, H. F. and R. A. Waller. Bayesian Reliability Analysis. John Wiley & Sons Ltd., Chichester, 1982.

Meyer, M. A. and J. M. Booker. Eliciting and Analyzing Expert Judgement. Society for Industrial and Applied
Mathematics, Philadelphia PA, 2001.

Moens, D. and D. Vandepitte. A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer

Methods in Applied Mechanics and Engineering, 194:1527–1555, 2005.

Muhanna, R. L., H. Zhang and R. L. Mullen. Interval finite elements as a basis for generalized models of uncertainty
in engineering mechanics. Reliable Computing, 13(2):173–194, 2007.

Muscolino, G., R. Santoro and A. Sofi. Reliability analysis of structures with interval uncertainties under stationary
stochastic excitations. Computer Methods in Applied Mechanics and Engineering, 300:47–69, 2016

Neumaier, A. Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990.

Neumaier, A. Fuzzy modeling in terms of surprise. Fuzzy Sets and Systems 135:21–38, 2003.

Oberguggenberger, M., J. King and B. Schmelzer. Classical and imprecise probability methods for sensitivity analysis
in engineering: A case study. International Journal of Approximate Reasoning, 50(4):680–693, 2009.

Oberguggenberger, M. Combined methods in nondeterministic mechanics. In I. Elishakoff and C. Soize, editors,
Nondeterministic Mechanics, pages 263–356. Springer-Verlag, CISM International Centre for Mechanical Sciences,
Vol. 539, Wien, 2012.

Oberguggenberger, M. Engineering. In T. Augustin, F. Coolen, G. de Cooman and M. Troffaes, editors, Introduction
to Imprecise Probabilities, pp. 291–304. John Wiley & Sons Ltd, Chichester, 2014.

Oberguggenberger, M. Analysis and computation with hybrid random set stochastic models. Structural Safety,
52:233–243, 2015.

Popper, K. The propensity interpretation of the calculus of probability and the quantum theory. In: S. Körner, editor,
Observation and Interpretation, London, pages 65–70, 1957. The propensity interpretation of probability. British
Journal for the Philosophy of Science 10:25–42, 1959.

Popper, K. Logik der Forschung. 10. Auflage, J. C. B. Mohr (Paul Siebeck), Tübingen, 1994.
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