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PREFACE 

Reliable Engineering Computing has emerged as a multi-disciplinary quality brand with this 
conference series, which was hosted at Georgia Tech Savannah in 2004, 2006, and 2008, at the 
National University of Singapore in 2010, at Brno University of Technology in Brno, Czech Republic 
in 2012, and at Illinois Institute of Technology in Chicago in 2014. The REC-meetings provide a 
unique symbiosis of various engineering and associated disciplines with the kernel areas of Civil and 
Mechanical Engineering, Computer Science, and Mathematics. The central issue of the discussions 
is the reliability of engineering computations. Cross-disciplinary advisements generate synergy and 
impulses of a new quality for research and development, as well as for innovative applications. 

The 7th International Workshop on Reliable Engineering Computing (REC2016) is hosted by the 
Institute for Structural Mechanics at Ruhr University Bochum, Germany. The topic of REC2016 
“Computing with Polymorphic Uncertain Data” aims to bring together different uncertainty 
quantification strategies. Polymorphic uncertainty modelling combines stochastic and non-stochastic 
approaches to quantify aleatory and epistemic uncertainties. Several simulation techniques are 
discussed to compute and predict the reliability of engineering structures and systems. 

As in the previous conferences, different fields of engineering, sciences, and mathematics within the 
context of risk and uncertainty are addressed. While providing solutions for real life problems is the 
ultimate goal of the engineering profession, it is crucial to retain the rigor of mathematical 
formulations and their computational implementations to ensure safety, reliability, and more accurate 
predictions. For that purpose, reliable approaches are required, starting with uncertainty 
quantification of input parameters with respect to available information, computing with uncertain 
data, and ending with the assessment and communication of responses due to uncertainty. The 
potential for research ranges over all scientific and societal issues related to reliability and 
computations of engineering structures and processes. 

REC2016, with its unique multi-disciplinary character, provides an ideal platform that brings the 
various aforementioned aspects together to achieve advancements in the field of Reliable 
Engineering Computing. Additionally, solution strategies are discussed and examined within the 
framework of polymorphic uncertain data. The results of this conference will provide support for the 
translation of Reliable Engineering Computing into general engineering practice. 

The editors would like to thank all authors and reviewers for their contributions. The conference is 
financially supported by the Science Ministry of the federal state of North Rhine-Westphalia, 
Germany by means of a scholarship awarded to Steffen Freitag as a Junior Member of the North 
Rhine-Westphalian Academy of Sciences, Humanities and Arts, the Collaborative Research Center 
SFB 837, and by Ruhr University Bochum. We appreciate the support of the sponsors and the 
supporting institutions. Additionally, the efforts of the technical support team of the Institute for 
Structural Mechanics at Ruhr University Bochum are highly appreciated. 

Steffen Freitag 
Rafi L. Muhanna 
Robert L. Mullen 
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Emerging Concepts and Approaches for Efficient and Realistic

Uncertainty Quantification ∗

Michael Beer1),2), Ioannis A. Kougioumtzoglou3), Edoardo Patelli2)
1)Institute for Risk and Reliability, Leibniz Universität Hannover, Hannover, Germany /

University of Liverpool, Liverpool, UK / Tongji University, Shanghai, China
beer@irz.uni-hannover.de

2)Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
3)Department of Civil Engineering & Engineering Mechanics, Columbia University, USA

Abstract: Our built environment is increasingly dominated by structures and infrastructure from
previous decades, partly even with a century of experienced lifetime. These structures and infras-
tructure are, to a significant extent, critical for the functionality of our economic and societal life,
and thus, require proper approaches and measures to verify and ensure their safety. Safety analysis
and maintenance scheduling, however, become increasingly complicated due to uncertainties and
complexity, which result significantly from ageing and from interactive phenomena. The realistic
quantification of uncertainties and their numerically efficient processing in complex analyses are the
two key challenges in this context. In this Chapter we discuss emerging concepts and approaches
which address these challenges in three directions.

∗ From: M. Beer, I.A. Kougioumtzoglou and E. Patelli. Emerging Concepts and Approaches for Efficient and Real-
istic Uncertainty Quantification. In: Maintenance and Safety of Aging Infrastructure: Structures and Infrastructures
Book Series, Vol. 10, D. Frangopol, Y. Tsompanakis (eds.), pp. 121–161, 2014, CRC Press/Balkema. For full text
please check DOI: 10.1201/b17073-6, Reproduced in the printed Proceedings by permission of Taylor & Francis Books
UK.
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Analyzing Uncertainty in Civil Engineering

Michael Oberguggenberger
Institute of Basic Sciences in Engineering Science, University of Innsbruck,

6020 Innsbruck, Austria; michael.oberguggenberger@uibk.ac.at

Abstract: This paper is meant as a survey of uncertainty analysis in civil engineering with an
emphasis on one of the unifying models: random sets. After a brief historical note about prob-
ability in civil engineering, various fundamental questions are addressed: sources of uncertainty
in engineering; measuring uncertainty: models and axioms; semantics: from the real world to the
model and back; aggregation and propagation of uncertainty; classification of models. In this general
discussion, a wide range of models will be incorporated: interval analysis, set-valued models, fuzzy
sets, probability, imprecise probability, random sets, sets of probability measures, and more. Further,
the theory of random sets will be featured in an engineering example. This theory is of intermediate
generality, but it allows one to treat intervals, bounding sets, probability distributions and imprecise
probability distributions on the same footing.

Keywords: uncertainty modeling, probability, intervals, random sets, unifying concepts

1. Introduction

Uncertainty analysis in engineering is a vast domain. Uncertainty has come a long way from being
ignored (or buried in safety factors) to the idea that it should be actively controlled—as exemplified
by the fashionable catch words risk management and uncertainty quantification. Historically, the
civil engineering community formed the avantgarde in the 1950s by introducing probability as a
framework for modeling and quantifying uncertainty (Freudenthal, 1956; Bolotin, 1969). By now,
the probabilistic framework is the prevalent paradigm in civil engineering, as is expressed by the
European codes (Eurocode, 2002). For reasons discussed below, however, a certain uneasiness about
the sole use of probability emerged in parts of the community in the 1990s. Alternative models found
their entrance in the engineering literature, among them interval arithmetic, fuzzy sets, convex
models, info-gap analysis, worst case scenarios, random sets, belief functions, interval probability,
upper and lower previsions—just to mention a few of the proposals.

Most of the methods can be classified as one or the other combination of the poles intervals and
probability. In fact, the theory of random sets can provide a unifying framework in which most (but
not all) of the mentioned approaches can be accommodated.

This article starts with various general considerations about uncertainty in civil engineering.
Next, a list of models is presented, followed by a discussion of their axioms, semantics, and numerical
aspects. The last part of the paper presents an application of random sets in a geotechnical example.
This brief article cannot cover the whole picture, nor provide an extended list of references. For
that we refer to the review articles (Beer, Ferson and Kreinovich, 2013; Oberguggenberger, 2011)

c© 2016 by authors. Printed in Germany.
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and, especially on random sets, (Oberguggenberger, 2014). The present paper is a condensed and
updated version of the latter two articles.

2. Modeling Uncertainty in Engineering

Three important ingredients have to be observed in uncertainty analysis in engineering. First, there
is reality (with materials, soils etc.). Second, there is the model of reality (formulated in math-
ematical terms and containing physical laws and constitutive equations). Third, correspondence
rules (prescribing how to translate one into the other) are needed. The physical model establishes
what are the state variables and what are the material constants, the parameters to be observed.
Once this has been decided, the values of the parameters have to be determined from information
extracted from the real world and will serve as input in the physical model. This plus the design
of the structure enters in numerical computations in the form of an input-output model Y = ϕ(X)
where X are the input parameters, ϕ is the model function, and Y is the output. Both X and ϕ
are uncertain, and the issue is the propagation of this uncertainty to the output Y . Apart from
providing insight into the behavior of the structure, the model output should provide a design that
works, reliable guidelines for action, and aids for decision making.

Models of the data uncertainty should reflect and incorporate the level of information available on
the data and, second, must be able to propagate it through numerical computations and deliver an
output whose uncertainty is formulated in the same terms. In addition, the uncertainty models need
correspondence rules themselves, that is, well-defined semantics. A further aspect that has to be
taken into account is how the information on the uncertainty of different parameters is combined—
this refers to modeling the dependence of variables as well as the combination of information from
different sources. For example, in a sum A+B of two parameters A and B, will the joint uncertainty
be the smallest interval containing all realizations a+b, or do we believe that extreme combinations
of realizations a+ b are less probable than those near the standard values? The first choice implies
adherence to the axiomatics of interval arithmetic, the second to the axiomatics of probability
theory. Thus three aspects of the modeling of uncertainty are isolated:

− Definition and axiomatics: How is uncertainty described and what are the combination rules?

− Numerics: How is uncertainty propagated through the computational model?

− Semantics: What is the meaning of the results—what do they say about our conception of
reality?

There are two major categories of uncertainty: model uncertainties and parameter uncertainties,
the latter encompassing the uncertainty of the data used to determine the parameter values.

Model uncertainties. The choice of the structural model is one of the central engineering decisions
to be made. For example, for the description of the soil, there are continuum models and granular
models, there are two- and three-dimensional models, there are multi-phase models (solids, liquids,
gases), and so on. The next point is the adequate selection of state variables and parameters
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(constant or not). In engineering, failure of a structure is described by the so-called limit state

function that separates the safe states from the unsafe states. The choice of the limit state function
is again an engineering decision. For example in geotechnics, is failure due to bounds exceeded by
average values of the total loads or due to localized disturbances?

Parameter uncertainties. Parameter variability can be attributed to a large number of causes.
There are random fluctuations, lack of information, random measurement errors, but also system-
atic measurement errors (deriving, e.g., from uncontrollable changes of the properties of the soil
material caused by its extraction in bore holes before being analyzed in the laboratory). There are
fluctuations due to spatial inhomogeneity, and errors made by assigning parameter status to state
variables. This is one of the essential and often unavoidable errors in engineering, because models
typically are valid in certain ranges only. If the state of the structure exits the intended range,
constants may turn into variables depending on external forces (for example, the friction coefficient
of most materials is approximately constant for small loads, but starts becoming a function of the
internal stresses for larger loads). Finally, there is variability arising from the fact that parameters
have to carry the burden of model insufficiency. The available information on data uncertainty may
range from frequency distributions obtained from large samples, values from small samples or single
measurements, interval bounds, to experts’ point estimates and educated guesses from experience.

Failure probability. Traditionally, engineers have dealt with uncertainty by employing safety fac-

tors. That is, the traditional codes would require that the load carrying capacity of the structure
exceeds the design loads by a certain factor > 1, typically 1.35 for permanent loads (such as dead
weight) and 1.5 − 2.0 for temporary loads. These factors have been negotiated in the committees
of standards. This state of affairs has been considered as unsatisfactory: no information about
the actual distance to failure can be extracted from such a procedure. Based on the desire for a
more analytical description of the uncertainties, engineering codes have been put on a probabilistic
foundation, starting with the pioneering work of (Freudenthal, 1956), (Bolotin, 1969) and others in
the 1950s. Under this point of view, every relevant parameter of the engineering model is a random
variable. There is no absolute safety, but rather a probability of failure.

To make it more precise, let the vector R comprise all random variables describing the resistance
of a structure, S the loads and denote by g(R,S) the limit state function (that is, g(R,S) < 0 means
failure, g(R,S) > 0 signifies a safe state). Then pf = P (g(R,S) < 0) is the failure probability;
R = 1 − pf is the reliability of the structure. To determine the probability pf , the types and
parameters of the probability distributions of R and S are needed. This multiplies the number of
parameter values that have to be provided by the designing engineer: each model parameter comes
with a distribution type and a set of (uncertain) distribution parameters. Actually, the current codes
employ critical values Rk and Sk (certain percentiles of R and S) and partial safety factors γR and
γS , so that the designing engineer has to verify a relation of the type Rk/γR ≥ γSSk. In theory,
the critical values and the partial safety factors are computed in such a way that this inequality
holds if and only if pf attains a certain required value pfr. In practice, γR and γS are not computed
but rather prescribed in the codes. Starting with the 1980s and 1990s, the European codes have
been changed into probability based codes. By now, this is the standard in civil engineering (see
e.g. EN 1990:2002 (Eurocode, 2002)). In addition, risk analysis and risk management have become
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a major ingredient in construction and project management. Especially calls for tender by public
organizations ask the contractor to supply a risk analysis together with the proposed design.

The civil engineering codes require that the designed structure obtains an instantaneous proba-
bility of failure of pf = 10−6 and a long-term failure probability of pf = 10−5. To credibly estimate
tail probabilities of such a small magnitude, a lot of information is needed. Problems with the
notion of failure probability, its meaning and practicability have been discussed at many places,
e.g., (Elishakoff, 1999; Fellin, Lessmann, Oberguggenberger and Vieider, 2005).

Imprecise probability models. As described above, there are many types of uncertainties in an
engineering model. It has been questioned whether a purely probabilistic approach is capable of
catching all aspects, for example, ignorance or fluctuations due to systematic model errors. In
addition, large samples allowing a frequentist assessment of data are rarely available. (Due to high
costs, sample sizes in laboratory experiments or soundings in soil investigations are usually small.)
However, what is generally known about a model parameter is a central value and a coefficient or
range of fluctuation. In geotechnics, geologists can provide interval estimates of soil parameters; a
geological report in tunneling may deliver rock classes and interval probabilities for their occurrence.

The uneasiness about the probabilistic safety concept and the desire for models of the data
uncertainty that reflect and incorporate the level of available information led to the search for
alternative concepts in the engineering community. On the one hand, probabilistic models and
probabilistic reasoning were considered as too tight a concept. On the other hand, engineering
practice shows that interval estimates should be incorporated in the framework of uncertainty
analysis. Here is a short list of concepts under consideration: fuzzy sets, evidence theory, interval
analysis, interval probability, random sets (random sets can bee seen as a framework bridging the
gap between probability and interval analysis and admitting easily accessible visualization tools such
as probability boxes), upper and lower previsions, clouds, info-gap analysis, ellipsoidal modeling,
anti-optimization, and more. A long list of references has been compiled in (Oberguggenberger,
2011). To subsume all these different approaches, the term Imprecise Probability has been introduced
(Walley, 2000; Augustin, Coolen, de Cooman and Troffaes, 2014).

3. Models of the Uncertainty

3.1. Definitions

In this section we shall focus on describing the main theories of uncertainty in the univariate case of
a single parameter. The following convention will be in use throughout the paper: parameters will
be denoted by upper case letters, e.g. A, while corresponding lower case letters, such as a, will be
reserved for their realizations. The description of the semantics is deferred to the next subsection,
except for the straightforward first two cases.

Deterministic values. The simplest approach is what in engineering terminology usually is called
deterministic description, that is, the parameter A is described by a single value a. The semantics is
simply that a is an expert estimate (or educated guess). Clearly, possible variations are not modeled
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in this approach, though their influence can be assessed to some extent by a classical sensitivity
analysis.

Intervals. The next level in modeling uncertainty is interval analysis. The uncertainty of the input
A is described by an interval [aL, aR], signifying bounds in terms of a worst/best case assumption.
In this way the total variability is captured, but no detailed information on the distribution of the
uncertainty is provided.

Probability. The most informative, but also most stringent description of the uncertainty of a
parameter A is by means of probability. If the probability distribution is given by a density pλ(a),
the probability that the realizations of the parameter A lie in a set S is

P (A ∈ S) =

∫

S

pλ(a) da.

The notation pλ indicates that, usually, the probability distributions arise as members of a class of
distributions which in turn are parametrized by parameters λ. For example, the class of Gaussian
normal distributions N (µ, σ2) is given by the Gaussian densities pλ(a) with parameters λ = (µ, σ),

pλ(a) =
1√
2πσ

e−
(a−µ)2

2σ2 .

Thus the complete specification of a probability distribution requires determination of the type it
belongs to as well as the values of its parameters.

Sets of probability measures. A central idea in relaxing the precision inherent in a probabilistic
model is to replace the single measure by a set of probability measures, a family M = {pλ : λ ∈ Λ}
where the parameter λ ∈ Λ specifies each participating single measure. A set of probability measures
defines lower and upper probabilities according to the rules

P (A ∈ S) = inf{P (A ∈ S) : P ∈ M},
P (A ∈ S) = sup{P (A ∈ S) : P ∈ M}.

The lower probability is the greatest lower bound of all probabilities that are assigned to the event
A ∈ S by choosing one of the probability measures from the set M (if attained, it is the minimum
of those values). Similarly, the upper probability is the least upper bound of such probabilities
(if attained, it is the maximum of those values). A frequently encountered instance of a set of
probability measures arises from parametrized probability distributions whose statistical parameters
are not singletons, but vary in intervals. For example, one might think of a family of Gaussian
variables with means µ from an interval [µ, µ].

As most of the models of uncertainty, the two subsequent theories—random and fuzzy sets—can
be seen as special prescriptions for obtaining sets of probability measures.

Random sets. A finite random set, also referred to as a Dempster-Shafer structure, is given by
finitely many subsets Ai, i = 1, . . . , n of a given set A, called the focal elements, each of which
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comes with a probability weight mi = m(Ai),
∑

m(Ai) = 1. The general case of an infinite number
of focal elements can be treated as well; the concept of a set-valued random variable being the
defining notion (see Subsection 3.2).

In the Dempster-Shafer approach (Shafer, 1976), the random set allows one to define a degree
of belief γ(S) and a degree of plausibility η(S), respectively, that the realizations of the parameter
A lie in S by

γ(S) =
∑

Ai⊂S

m(Ai) , η(S) =
∑

Ai∩S 6=∅

m(Ai). (1)

A random set can also be interpreted as a prescription for a set of probability distributions. Denote
by M(Ai) the totality of all probability measures supported by Ai, that is, a probability measure
P on the underlying set A belongs to M(Ai) if P (Ai) = 1. The set of probability measures induced
by the given random set is

M = {P : P =
∑

m(Ai)Pi, Pi ∈ M(Ai)}. (2)

One can show that the corresponding lower and upper probabilities coincide with the degrees of
belief and plausibility, respectively. That is, for any (measurable) subset S of A, it holds that

P (S) = γ(S) , P (S) = η(S). (3)

Fuzzy sets. Fuzzy sets can be viewed as ordered families of sets or as membership functions. It
is simplest to describe the ideas by means of the special case of a fuzzy real number A. From the
first point of view, A is a family of parametrized intervals. The parametrization is done in terms of
levels α, 0 ≤ α ≤ 1. Each level α has a corresponding interval Aα so that Aβ ⊂ Aα if α ≤ β. Thus
the intervals are stacked and can be depicted by their left/right contour functions. More generally,
one could allow the Aα to be arbitrary, stacked subsets of a given set of objects under investigation
(complex numbers, vectors, matrices, functions or the like).

In the second approach, the contour function is taken as the primary object, and a fuzzy set A
(over the real numbers) is just a map from the real line to the interval [0, 1], assigning to each real
number a a value πA(a) ∈ [0, 1]. This value may be interpreted as the membership degree to which
a belongs to the fuzzy set A, or in the language of parameters, as the degree of possibility that
the parameter A takes the value a. In classical set theory, the membership degree is either 0 or 1;
fuzzy set theory permits gradual membership as well. The intervals from the first interpretation
are now the α-level sets Aα = {a : πA(a) ≥ α}. In analogy to the situation in probability theory,
one can introduce a possibility measure on the underlying set, defining a degree of possibility for
each subset by πA(S) = sup{πA(a) : a ∈ S}, giving the degree of possibility that the parameter A
takes a value in S. The possibility measure is monotone, i.e., πA(S) ≤ πA(T ) if S ⊂ T . Possibility
measures are actually in one-to-one correspondence with fuzzy sets; given a possibility measure π,
its evaluation on singletons defines the membership function of a fuzzy set: πA(a) = π({a}).

Lower and upper previsions. In the probabilistic setups discussed so far, probability P is the
fundamental quantity. The outcomes of a random variable X can be described by their probabilities
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P (X ∈ S). The expectation E(X) and the moments E(Xm) are derived quantities, e.g., in terms
of a probability density p(x):

E(X) =

∫

xp(x) dx, E(Xm) =

∫

xmp(x) dx.

Conversely, the probability of an event S can be viewed as the expectation of its indicator function
X(x) = 1S(x), which equals one if x belongs to S and zero otherwise: P (S) = E(1S). This opens the
way to setting up a theory based on expectations of random variables as fundamental quantities.
Actually, the approach is more general, as one may admit smaller or larger sets of random variables,
now called gambles. A linear prevision, as introduced by (de Finetti, 1970) is a linear functional E,
assigning to each gamble a value between 0 and 1. The extension to interval-valued previsions, see
e.g. (Walley, 1991), can be done as follows. The basic gambles are given by a random variable X
and a number of functions f1(X), ..., fm(X) of it. Lower and upper previsions are functionals on the
set of gambles with E(fi) ≤ E(fi). Various types of information can be modeled by means of lower
and upper previsions. For example, if 1S is the indicator function of an event S, then the previsions
E(1S) and E(1S) can be regarded as lower and upper probabilities of the event S. If fi(X) = X,
then E(fi) and E(fi) are bounds on the mean value of the corresponding random variable.

For computing new previsions E(g) and E(g) of a gamble g(X) from the available information,
natural extension is used which can be written as the optimization problem

E(g) = min
p

∫

g(x)p(x)dx, E(g) = max
p

∫

g(x)p(x)dx

subject to

p(x) ≥ 0,

∫

p(x) dx = 1, E(fi) ≤
∫

fi(x)p(x)dx ≤ E(fi), 1 ≤ i ≤ m. (4)

Here the minimum and maximum are taken over the set of all possible probability density functions
p(x) satisfying conditions (4).

3.2. Semantics

As outlined in the introduction, the interpretation of a theory is an essential ingredient for achieving
an adequate translation from model into reality and back. Needless to say that the assertions made
by a model become meaningful only in the context of the underlying semantics. Different semantics
imply different meanings. One has to be aware of the interpretations used when comparing assertions
made by different authors, all the more so as often the same vocabulary is employed for notions
that differ in the various interpretations.

Probability. The interpretation of probability has been the subject of scientific dispute for cen-
turies; see (Fine, 1973) as an encompassing reference. The most prevalent and important semantics
in engineering practice are:

1. Classical probability, based on principles like the principle of non-sufficient reason would, in
colloquial terms, determine the probability of an event S as the fraction of favorable cases
among the possible cases.
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2. Frequentist probability, based on the idea of random occurrence of an event in a sequence of
independent trials, would approximate the probability of an event S by its relative frequency.

3. Subjective probability is meant to be a measure of personal confidence. It can be assessed by
introspection and/or elicitation through experts.

Example: As an illustration, let us assess the probability p of throwing a six with a dice. If
nothing is known about the dice, there is no sufficient reason to assume that it is biased. Thus
the classical probabilist would assess the probability as 1 (favorable outcome) over 6 (possible
outcomes), hence p = 1/6. A frequentist person would repeatedly roll the dice a large number of
times and use the fraction of sixes among all results as an estimate for the probability. (If the dice is
indeed unbiased and N is large, say N = 10000, the fraction will be close to 1/6.) The subjectivist
would guess the probability as p = 1/6, if he/she has enough trust into the unbiasedness of the
dice. If the subjectivist is willing to bet 1 monetary unit for a gamble that rewards him/her with
6 units when a six is thrown, an observer could infer that the subjectivist believes the probability
p to be at least 1/6.

In its applications, classical probability often takes the form of combinatorial probability. Aside
from the obvious application in computing the chances in a lottery, it is often the means by which the
standard probability distributions are derived, like the binomial or geometric distributions. Another
example would be the exponential distribution for the survival time of a radioactive particle which
is an immediate combinatorial consequence of the law of radioactive decay.

The central idea of frequentist probability is the sample with its statistical parameters. It
is viewed or designed as a sequence of independent realizations of the random variable whose
distribution parameters have to be determined—keeping the boundary conditions constant. The
relative frequencies of the realizations of an event are taken as estimates for the probability of the
event. The sample parameters like sample mean or sample variance correspond to moments of the
random variable—expectation value and variance in this case. From there, the parameters of the
distribution of the random variable can be estimated. This is one of the wide-spread procedures for
fitting models based on the frequentist interpretation.

From the viewpoint of the philosophy of science, the frequentist interpretation carries a number
of problems, among them the question whose probability is realized in the sample (of the random
variable, or of the experiment which was designed to measure it—a possible answer to this question
has been given by Popper with his notion of propensity (Popper, 1957)). A pragmatic approach with
a cautious and critical attitude has proven to provide a successful basis for probabilistic models in
science and engineering.

A further issue of debate has been the fact that the decision aids mentioned above provide
meaningful evaluations only if the sample size is sufficiently large, a condition which remains vague,
and in civil engineering—with often very small sample sizes—is frequently lacking. This is the point
where subjective probability enters engineering. When such a switch of interpretation is undertaken,
we believe that it is the responsibility of the engineer to put it in the open. Otherwise the meaning
of probability in the final result is lost or at least obscured.

Turning to subjective probability, we first mention that schemes have been developed that allow
one to deduce it from decision theoretic principles, assuming rational behavior of the agent. This
has been done to obtain operational ways of extracting the personal probability assessment of an
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agent/decision maker quantitatively. One way promoted by (Savage, 1954) has been the notion
of indifference price. To determine a probability of an event S, the decision maker is required to
imagine a gamble which pays one monetary unit if event S occurs and zero otherwise. The decision
maker surely would buy the gamble at the price of zero units, but surely not for more than one
unit. Raising the lower bound for the price and lowering the upper bound should eventually lead
to a price at which the decision maker is indifferent to buying the gamble or not. This indifference
price is the probability P (S) of the event. It is argued that the indifference price also equals the
minimal price P (S) at which the decision maker is willing to sell the gamble, as well as the maximal
buying price P (S).

This has been a point of critique, because real world persons do not behave strictly rational in
this sense and often lack the information to decide about the minimal selling and maximal buying
price. Thus an interval [P (S), P (S)] appears to be a more accurate description of a decision maker’s
information. This line of argument directly leads to imprecise probability, probability intervals, and
lower and upper probabilities. In practical engineering applications, elicitation of probabilities from
experts is the paradigm for obtaining subjective probabilities quantitatively. We refer e.g. to (Meyer
and Booker, 2001; Ross, Booker and Parkinson, 2002).

Finally, we should not fail to mention the Bayesian approach to assessing probability distribu-
tions. From the Bayesian viewpoint, everything is a random variable, including the parameters,
say Θ, of the distributions of the original variables, say X, to be assessed. The Bayesian approach
has interpretations both in the frequentist as well as the subjective setting. In the civil engineering
literature, it has been found useful for combining expert knowledge with sample data (Martz and
Waller, 1982; Rackwitz, 2000). The expert knowledge may be based on known frequencies or on
subjective estimates and is encoded in the prior distribution of the parameter θ. Sample data x (or
again expert estimates obtained in situ) are then used to produce a posterior distribution of the
distribution parameter θ according to Bayes’ rule, loosely stated as

p(θ|x) = p(x|θ)p(θ)
p(x)

.

The data vector x may have length 1, or may consist in a large sample of size n, so that the
Bayesian procedure may accommodate single estimates up to sample sizes satisfying frequentist
requirements. The assessment of the distribution of the original variable X is completed by the
Bayes estimate of its distribution parameter θ̂ =

∫∞
−∞ θ p(θ|x) dθ.

Sets of probability measures. Sets of probability measures can arise both in a frequentist as well as
in a subjectivist approach. In a frequentist setting, sets of probability measures arise as sets of fitted
distributions: in fact, confidence regions for the distribution parameters imply that parametrized
families of distributions are employed. Further, robust statistics is based on distributions neighboring
a given distribution, see e.g. (Huber, 1981).

As we have just seen above, sets of probability distributions are inherent in Bayesian statistics
(each parameter value θ defines a distribution of the original variable). In order to avoid implausible
determinations due to the choice of a prior distribution, families of prior distributions have been
employed (robust Bayesian methods), as well as fuzzy prior distributions.
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Further, referring to the decision theoretic foundation of probability, replacing the indifference
price by an interval [P (S), P (S)] leads to interval-valued probabilities, which again imply that a
set of probabilities is considered.

Random sets. In a frequentist interpretation, this might correspond to a sample of size n of interval
data for a parameter A, the probability weight being approximated by the relative frequency. The
difference to a histogram then is that the focal elements Ai may overlap. In geotechnical engineering,
for example, interval data arise as ranges of rock parameters associated with certain rock classes.
These rock classes in turn may be the outcomes, obtained with a certain frequency from in situ
measurements. In a subjectivist interpretation, the focal elements Ai may be (possibly conflicting)
estimates given by different experts and the weights might correspond to each expert’s relative
credibility.

Random sets have turned out to be useful for bracketing probability estimates given by different
sources as well as for combining information of different type, due to the observation that every
histogram, every interval and every fuzzy set can be viewed as a random set, without a need for
artificial transformations (Goodman and Nguyen, 2002; Kreinovich, 1997).

A good visualization of a random set can be given through its contour function on the basic
space A, assigning each singleton a its plausibility: a → P ({a}). It is simply obtained by adding
the probability weights pi of those focal elements Ai to which a belongs.

When A is the set of real numbers, the random set defines a so-called probability box which is
bounded by the upper and lower distribution functions

F (x) = P (−∞, x], F (x) = P (−∞, x], (5)

see (Ferson, Kreinovich, Ginzburg and Myers, 2003). Any distribution function F (x) that arises
from one of the probability measures from the set M (cf. Equation (2)) is necessarily bounded by
the probability box: F (x) ≤ F (x) ≤ F (x). Thus the probability box is a good representation of the
variability of a quantity described by a random set.

We now turn to the more general case of infinite random sets. For most applications in reliability
theory it suffices to consider closed random sets defined on the probability space Ω = [0, 1] with
the uniform probability distribution. Recall that the uniform probability P on the interval [0, 1]
assigns to each subinterval of [0, 1] its length, that is, P [α, β] = β − α for 0 ≤ α ≤ β ≤ 1.

Thus—in our narrower sense—a random set is a function [0, 1] → A : α → Aα where each Aα

is a closed subset of the real line A as basic space. Often, the focal elements Aα are just closed
intervals. In the multivariate case, we would take the d-dimensional unit hypercube Ω = [0, 1]d as
probability space and the focal elements as closed subsets of d-dimensional coordinate space.

In generalization of formulas (1) and (3) we define the plausibility of an event S as

P (S) = P (α ∈ [0, 1] : Aα ∩ S 6= ∅) =
∫

{α∈[0,1]:Aα∩S 6=∅}
dα (6)

and the belief

P (S) = P (α ∈ [0, 1] : Aα ⊂ S) =

∫

{α∈[0,1]:Aα⊂S}
dα, (7)
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and the upper and lower distribution functions are given by formula (5). They form a probability
box which may be viewed as the envelope of all cumulative distribution functions encoded in the
random set.

Examples: (a) Every Dempster-Shafer structure can be viewed as an infinite random set, in
which the focal elements Si arise as certain Aα with repetition. For this purpose, we subdivide the
interval [0, 1] into n subintervals of length pi and put

Aα = A1, 0 ≤ α ≤ p1, Aα = A2, p1 < α ≤ p1 + p2,

and so on until Aα = An, p1 + p2 + . . .+ pn−1 < α ≤ 1.
(b) Fuzzy sets. every normalized fuzzy number can be seen as a random set; the sets Aα are just
the α-level sets. It is not difficult to prove that the possibility measure of a subset S of the real line
coincides with its plausibility: P (S) = sup{π(x) : x ∈ S}.
(c) Random variables. A random variable X can be reconstructed as a random set on [0, 1] by
putting Aα = F−1(α) where F (x) is the distribution function of the random variable and F−1 its
inverse or, more generally, pseudo-inverse. The plausibility and belief of an event B coincide with
the probability of the outcome P (X ∈ B).
(d) Random sets constructed from Tchebycheff’s inequality. A major application of the tools out-
lined above is the construction of random sets from minimal information on a random variable X.
Let µ = E(X) be its expectation and σ2 = V(X) its variance. Tchebycheff’s inequality asserts that

P (|X − µ| > dα) ≤ α with dα = σ/
√
α (8)

for α ∈ (0, 1]. Let Aα = [µ−dα, µ+dα]. By Tchebycheff’s inequality, the probability of Aα is greater
or equal to 1 − α, while the probability of its complement Ac

α is less or equal to α. Thus Aα will
contain approximately a fraction of 1− α of the realizations of the random variable X, e.g., A0.05

contains about 95%, A0.10 contains about 90%, etc. This is a conservative, non-parametric estimate
valid for whatever distribution of the random variable X. It encodes the minimal information
that can be extracted from the expectation and the variance of a random variable without further
parametric assumptions. We formalize this information as an infinite random set (actually a random
interval) α → Aα on the space Ω = (0, 1], equipped with the uniform probability distribution. Of
course, Tchebycheff’s inequality can be replaced by narrower estimates if more is known about the
distribution of the given random variable, for example, symmetry or unimodularity.

Fuzzy sets. In engineering and in risk analysis applications, probabilistic models have been crit-
icized as requiring more input from the designing engineer or the decision maker than could be
plausibly provided—or that would be reasonably required for a rough estimate. In particular, the
requirement that probabilities have to add up to 1 causes the problem that probabilities of events
change when additional events are taken into consideration. Further, probabilities have to be set
up in a consistent way, e.g. satisfying the rule p(S ∪ T ) = p(S) + p(T ) − p(S ∩ T ) and thus do
not admit incorporating conflicting information (in the sense that the intersection of an event S
with its complement can never have positive probability). Fuzzy set theory appears to provide a
resolution of these difficulties in as much as it admits much more freedom in modeling. Further,
fuzzy sets may be used to model vagueness and ambiguity.
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The notion of possibility provides an interpretation for a fuzzy set and an operational method of
constructing it, as we wish to argue here. We imagine that a fuzzy set describing the uncertainty
of a real-valued parameter has to be designed. The procedure proposed here is based on a scale
0 ≤ α ≤ 1. The linguistic meaning of the α-values is specified verbally by the designing engineer
or the decision maker in advance, but then remains fixed during the whole modeling process (for
example, α = 1 signifies the standard value of the parameter, α = 2/3, 1/3, 0 might indicate high,
medium, and low degree of possibility).

One would start by specifying the standard value aS of the parameter, in engineering terminology
often referred to as the deterministic approximation and assign degree of possibility α = 1 to
it. Next, possible deviations of the parameter from the standard value are taken into account,
corresponding to decreasing degree of possibility, until the minimal and maximal values, which are
assumed with very small degree of possibility, are reached at level α = 0.

The notion of possibility can be given an operational meaning, using the language of subjective
risk assessments. Thereby, it is envisaged that the risks leading to parameter fluctuations at the
corresponding possibility level are established in an analysis of scenarios. The level sets correspond
to the bounds a parameter attains under a certain risk level.

There is also a normative approach which uses pre-shaped, parametrized membership functions
as well as the suggestion to use elicitation procedures; see (Dubois and Prade, 1988; Ross, Booker
and Parkinson, 2002) for further details.

An alternative way of establishing the semantics of possibility is to start from the notion of
potential surprise and to define possibility as its complementary notion or as a transformed quantity
thereof (Neumaier, 2003). For a decision-theoretic foundation, see (Dubois, Prade and Sabbadin,
2001), for possibility as a transformation of probability, see (Dubois, Prade and Sandri, 1993).

Lower and upper previsions. A behavioral interpretation of lower and upper previsions has been
elaborated by Walley (Walley, 1991), who also set up an axiomatic system of lower and upper
previsions, derived from certain principles, such as avoiding sure loss. Previsions are functionals
defined on gambles, thus the betting analogy (already used in the operational definition of subjective
probability) comes in naturally. The lower prevision E(g) of a gamble g(X) is the supremum buying
price (the largest sum the decision maker is willing to pay for the gamble), while the upper prevision
E(g) is the infimum selling price. Lower and upper probabilities of events are obtained as lower and
upper previsions of their indicator functions. In contrast to subjective probability (which would
translate into linear previsions), the decision maker is not obliged to end up with a single number
(the indifference price), but has the freedom to remain undecided about the probability of an event,
within the bounds given by its lower and upper probability.

3.3. Axiomatics

Referring to probability theory, it has been emphasized by (Popper, 1994, Section 71) that a formal
mathematical system of axioms and postulates is required in order to approach the problem of
relations between the different interpretations of probability. All the more so, this applies to the
problem of comparing the different theories of uncertainty. By now, all these theories can be based
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on appropriate axioms, the most well known being the Kolmogorov axioms of probability and the
Choquet axioms of capacities.

We do not give a detailed exposition of the axioms here, but just highlight a few of them, showing
that they lead to different combination rules in the various models of uncertainty. This may serve
as a means of distinguishing the models as well as a guiding criterion to decide which model should
be selected for what purpose.

The axioms fix the algebraic properties of the corresponding set functions. For example, proba-
bility measures p define additive set functions, that is,

p(S ∪ T ) = p(S) + p(T )− p(S ∩ T )

for sets S, T . This is not true of possibility measures π, which in turn satisfy

π(S ∪ T ) = max{π(S), π(T )}.

Both probability measures and possibility measures are special cases of plausibility measures η
which enjoy the more general property

η(S ∪ T ) ≤ η(S) + η(T )− η(S ∩ T ).

All these set functions are contained in the largest class of monotone set functions µ, also called
fuzzy measures, characterized by the property

µ(S ∪ T ) ≥ max{µ(S), µ(T )}.

Suitably completing these algebraic properties to full systems of axioms, it is actually possible
to characterize all these type of measures (and many more). The following hierarchical relations
obtain:

probability → plausibility
possibility → plausibility
plausibility → monotonicity.

This means that every probability measure is a plausibility measure, and so on (thus plausibility
theory is more general than probability theory, in the sense that it admits a larger class of measures).
Probability measures and possibility measures are in no implication relation in either direction.

Alternatively, if one starts from the notion of random sets, probability would correspond to
singletons as focal elements, possibility to nested focal elements, and plausibility to arbitrary focal
elements.

3.4. Numerics

Practically all engineering models are input-output systems. Given certain input values (model
parameters, initial conditions, dimensions, etc.) the model produces output values (displacements,
stresses, costs, etc.). In other words, the model is a function ϕ that assigns to the input data
A certain output values ϕ(A). Both A and ϕ(A) may be multidimensional (for simplicity, we
shall consider ϕ(A) as one-dimensional in the sequel—corresponding to a single component of a
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multidimensional output). Often, the function ϕ is a computer code, in which case the output is
obtained as a numerical approximation. If the input data consist of a single, deterministic data
value, then the model produces a uniquely determined output. If the input data fluctuate, so does
the output. If the fluctuation of the input is described by one or the other theories of uncertainty
discussed so far, the fluctuation of the output should be captured on the same terms. This is the
issue of this section: how is data uncertainty propagated through an input-output system?

Deterministic values. If a is an expert estimate of some input parameter A, the output is just
the value ϕ(a) of the function ϕ at a. In this framework, the effects of the uncertainty of the input
parameters can still be assessed by performing a sensitivity analysis. In its classical form, sensitivity
analysis means the study of the derivatives of the function ϕ at the fixed value a of interest, that
is, the linear approximation to the change in output when the input parameter a is changed to a
nearby value b:

ϕ(b) ≈ ϕ(a) +
dϕ

da
(a)(b− a), ϕ(b) ≈ ϕ(a) +

n
∑

i=1

∂ϕ

∂ai
(a)(bi − ai)

(left: univariate case; right: n-dimensional parameter a = (a1, . . . , an)), where the approximation

error is of order |b − a|2. The sign and size of the partial derivative ∂ϕ
∂ai

(a) is an indicator of the

influence of the i-th component of the parameter a on the output (provided all components ai are
of the same scale).

Intervals. If A is an interval, the functional evaluation ϕ(A) results in a set of values (an interval,
if ϕ is continuous and one-dimensional). In general, both A and ϕ(A) could be sets of arbitrary
geometry. In interval arithmetic, one would bound these sets by the smallest multidimensional
intervals (boxes) that contain them (see (Neumaier, 1990)). In any case this approach represents
the full range of the possible output values without further fine structure.

Probability measures and random sets. Given a single probability measure and a (measurable)
map ϕ, the output probabilities are determined through the induced image measure, that is,
P (ϕ(A) ∈ S) = P (A ∈ ϕ−1(S)). Though the distribution of the random variable ϕ(A) can be
computed by this prescription in principle, this is practically impossible as soon as ϕ attains a
rather moderate complexity. The numerical method for approximating the output distribution by
means of an artificially created sample is Monte Carlo simulation.

In case the uncertainty of the input is modeled by a set M of probability measures, the map
ϕ induces a set of probability measures as well, namely the collection of all image measures,
obtained from M under this map. The computation of lower and upper probabilities turns into an
optimization problem.

If the input is described by a random set with focal elements Ai, i = 1, . . . , n and probability
weights m(Ai), the output is again a random set which consists of the focal elements ϕ(Ai), i =
1, . . . , n, supplied with the original weights m(Ai) (or sums of weights in case some of the image sets
ϕ(Ai) coincide). In case the sets ϕ(Ai) are intervals, their boundaries can be found by optimization
(minimizing/maximizing the function ϕ on Ai). The determination of lower and upper probabilities
is then a combinatorial task involving the formulas for belief and plausibility.
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Fuzzy sets. The question of propagating the uncertainty of a fuzzy input A through a function
ϕ needs some more explication. If the input is a fuzzy set with membership function πA(a), say,
the output will also be a fuzzy set, described by a membership function πϕ(A)(b). According to the
Zadeh extension principle (Zadeh, 1975), it is given by

πϕ(A)(b) = sup {πA(a) : ϕ(a) = b}.

In case the input consists of a vector of parameters A = (A1, . . . , Am), the extension principle takes
the form

πϕ(A)(b) = sup {min (πA1(a1), . . . , πAm
(am)) : ϕ(a1, . . . , am) = b}.

Note that this comes naturally from the possibility-theoretic interpretation: to compute the degree
of possibility that ϕ(A) takes the value b, one has to look for all combinations a1, . . . , am producing
the value b; each single combination gets the smallest possibility among its participants, while b gets
the supremum of all possibility degrees that can be obtained in this way. In case ϕ is continuous
and the α-level sets of A1, . . . , Am are compact (0 < α ≤ 1), this corresponds exactly to computing
the range of the function ϕ on each α-level set,

ϕ(A)α = ϕ(Aα) , respectively, ϕ(A1, . . . , Am)α = ϕ(Aα
1 , . . . , A

α
m).

When the Aα
j are intervals, in addition, the set ϕ(A1, . . . , Am)α is an interval as well. The compu-

tation of its boundaries is then a task of global optimization: finding the minimum and maximum
value of ϕ on the set Aα. In any case, the procedure is consistent: if the input data are structured
as stacked intervals, so is the output.

3.5. The multivariate case

In principle, the multivariate case, that is, the case when the input A has several components
A1, . . . , An, has been covered by what has been said above—all applies to multidimensional intervals,
random sets, fuzzy sets and multivariate distribution functions. However, the issue is how to model
mutual dependence, correlation, interaction, influence of the different components. In addition, the
task remains to model infinitely many components, as arising in spatial fields or temporal processes,
when the parameters are functions of space and/or time.

There is a rather well established notion of independence in probability theory: two random
variables are independent when their joint distribution function is the product of the individual
(marginal) distribution functions. The situation is also clear in interval analysis: two parameters
taking interval values are non-interactive when their joint behavior is described by the product
of the two intervals (a rectangle), and interactive when their joint range is a proper subset of the
product interval. This idea extends to fuzzy sets: Two fuzzy sets are non-interactive, when all their
α-level sets are rectangles.

More precisely, given d univariate fuzzy sets A1, . . . , Ad, the non-interactive joint fuzzy set has
the α-level sets

Aα = A1
α × · · · ×Ad

α, α ∈ (0, 1].

Interactivity can be modeled by certain parametric restrictions on the α-level sets. To avoid combi-
natorial complications, consider interactivity of at most two out of the d variables. Since an α-level
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set of the form Ai
α×Aj

α is a homothetic image of the unit square, it suffices to give the definitions for
A1

α = A2
α = [0, 1]. Interactivity can be modeled by replacing the unit square by a diamond-shaped

region, symmetric around one of the diagonals. Let 0 ≤ ρ ≤ 1 and define the points P1, . . . , P4 by

P1 = (ρ/2, ρ/2), P2 = (1− ρ/2, ρ/2),
P3 = (1− ρ/2, 1− ρ/2), P4 = (ρ/2, 1− ρ/2).

Interactivity of positive degree ρ is modeled by taking the rhombus with corners (0, 0), P2, (1, 1), P4

as joint level set, while interactivity of negative degree −ρ is modeled by the rhombus with corners
(0, 1), P1, (1, 0), P3 as joint level set. This is a straightforward way of introducing parametric
interactivity in fuzzy sets. Of course, one can imagine replacing the diamond shapes by other
geometric shapes.

Switching to random sets, the situation becomes more complicated. The concept of independence
splits into a number of different concepts, all coinciding when the focal elements are singletons
(i.e., when the random set is actually a scalar random variable). Random set independence is
characterized by two properties: the joint focal elements are products of intervals, and the joint
weights are the products of the corresponding individual (marginal) weights. Strong independence

is obtained when the underlying set of joint probability measures is required to consist of product
measures only. Going deeper into the structure of the underlying set of probability measures,
many more notions of independence can be considered, one of the more prominent being epistemic

independence. For further details on this, see e.g. (Fetz and Oberguggenberger, 2004).
To model dependence, the notion of copulas has gained increased attention in the past decade.

An n-dimensional copula is a multivariate probability distribution function on the n-dimensional
unit hypercube whose marginals are uniform distributions. Thus in the two-dimensional case, it is
a function C(u, v) of two variables u, v ∈ [0, 1] which satisfies

C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0, C(1, v) = v

and which is two-monotone, i.e.,

C(u+ h, v + k) + C(u, v)− C(u+ h, v)− C(u, v + k) ≥ 0.

The joint distribution FXY (x, y) of two random variables X,Y can be reconstructed from the
marginal distributions FX(x), FY (y) by means of a copula:

FXY (x, y) = C(FX(x), FY (y)).

The point is that given the marginals FX(x), FY (y), parametric copulas can be found that produce
a joint distribution with a prescribed correlation structure. In the situation of random sets, copulas
can be used to introduce correlations on the basic probability weights.
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4. Application to an Example From Geotechnics

In this section, some of the methods will be shown at work in an example from geotechnics: an
infinite beam on a linear elastic bedding. We begin by discussing the setup and a straightforward
probabilistic model, which will be refined subsequently.

4.1. Deterministic/probabilistic dimensioning

The simplest, one-dimensional model is the so-called Winkler beam, extending along the real line
with coordinate x ∈ R. The displacement u(x) is described by the bending equation

EI uIV (x) + bc u(x) = q(x), −∞ < x < ∞,

see e. g. (Bolotin, 1969, Section 61). Here EI is the flexural rigidity of the beam, b its effective
width, c the bearing coefficient of the foundation and q(x) the loading. One may imagine that the
beam describes a buried pipeline, the loading q(x) resulting from the covering soil. The parameters
EI and b of the beam may be considered as precisely known, whereas the soil properties c and q
vary in an imprecisely known fashion. We will study the singular boundary value problem for the
standardized equation

uIV (x) + 4k4u(x) = p(x), −∞ < x < ∞ (9)

with bc/EI = 4k4, p(x) = q(x)/EI, requiring that the solution should remain bounded at ±∞. In
case k is a constant and p(x) is an integrable function, both deterministic, its unique deterministic
solution is given by

u(x) =

∫ ∞

−∞
G(x, y) p(y) dy

in terms of its Green function

G(x, y) =
1

8k3
e−k|x−y|( sin k|x− y|+ cos k|x− y|).

In case the load q(x) ≡ q (and hence p(x) ≡ p) is constant, the displacement is constant as well
and simply given by

u(x) ≡ p

4k4
=

q

bc
.

For the computational examples to follow we let the parameters vary around central moduli of
k = 10−2, p = 10−8. Approximately, this corresponds to the case of a buried cast-iron pipeline
with an effective diameter of 6 [cm], covered by about 100 [cm] of top soil (q = 10 [N/cm]) and
bedded in loosely packed sand (c ≈ 6.7 [N/cm3]). The resulting overall displacement would amount
to u(x) ≡ 0.25 [cm] in the deterministic case.

In a probabilistic design, one would assume that the input parameters are random variables.
In a standard engineering approach, one would argue that their mean values are given by the
deterministic design values; further, a coefficient of variation is assumed (for material properties,
usually around 5%, for soil parameters up to 15%, cf. (Rackwitz, 2000)). In the simple example, the
most uncertain parameters are q (mean µq = 10) and bc (mean µbc = 40); we take a coefficient of
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variation of 10%. Next, a type of distribution for the parameters has to be assumed. Both q and c
are soil- and bedding related parameters, whose values strongly depend on what actually happens
at construction site. Thus little evidence about the type of distribution is available. For the sake
of presentation, we make the assumption that both parameters are normally distributed, that is,
q ∼ N (10, 1), bc ∼ N (40, 16). Under this assumption, we can compute the probability density of
the displacement u = q/bc, see Figure 1, and read off the quantiles. For example, the probability
that the displacement is larger than 0.5 [cm] is ≈ 3.9 · 10−6.
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Figure 1. Probability density (left) and distribution function (right) of displacement under constant, but random
load.

It is quite clear that the model is too simple to be credible. In particular, the load will certainly
not be given by a single, albeit random, value along the whole beam, but will rather vary from
point to point.

This suggests describing the load as a random field q(x), x ∈ R, and thus brings us to a second
important aspect of probabilistic modeling in engineering. At each point x in space, the load q(x) is
assumed to be a random variable. To define the field, the joint distributions of the loads at any finite
number of points q(x1), . . . q(xn) should be specified. The standard assumption in soil engineering
is that the random field is homogeneous (i.e. the finite dimensional distributions are translation
invariant) and Gaussian. In this case, the field is completely specified by the mean value µq and the
second moments, i.e., the covariance COV(q(x), q(y)) for any two points x, y. Due to homogeneity,
the covariance depends only on the distance ρ = |x− y| of the points and is of the form

COV(q(x), q(y)) = σ2C(ρ)

with the variance σ2 and the so-called autocorrelation function C(ρ). A typical autocorrelation
function is of the form

C(ρ) = exp (− |ρ|/ℓ),
where ℓ is the so-called correlation length (available in the literature for different types of soil, see
e.g. (Rackwitz, 2000)).

Thus for modeling the load as a homogeneous Gaussian field, we need to provide the mean value,
the variance and the autocorrelation function. As above, the mean value is assumed to be µq = 10;
for the field variance we take σ2

q = 4. In the following, we assume a moderate correlation length of

ℓ = 100 [cm] and take bc fixed at its deterministic design value 40 [N/cm2]. A realization of the load
and the corresponding displacement is shown in Figure 2; Figure 3 (left) shows the corresponding
realization of the bending moment.
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A critical quantity for assessing the safety against failure is the maximal bending moment Mmax

in the beam, which is given by Mmax = max(EIu′′(x)). A typical failure criterion would require that
the maximal stress Mmax/W (with the section modulus W ) does not exceed the admissible stress
(corresponding to the 0.1% yield strength, that is, the stress after which 0.1% plastic deformations
remain). We drop the lengthy details and just show how Mmax would be assessed probabilistically.
To this end, a Monte Carlo simulation of N = 500 trajectories has been undertaken, yielding an
estimate for the distribution of Mmax. Figure 3 (right) shows the result; the histogram has been
extrapolated with the aid of a kernel smoother. In this way, we get the estimate P (Mmax > 6000) ≈
6.52 · 10−5, for example. We record this value for reasons of comparison with Section 4.4.
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Figure 2. Random field model: trajectories of load process (left) and corresponding displacement (right).

−1000 −500 0 500 1000
−1000

−500

0

500

1000

position [cm]

m
om

en
t [

N
cm

]

2000 3000 4000 5000
0

2

4

6

8

x 10
−4

maximal moment [Ncm]

pr
ob

ab
ili

ty
 d

en
si

ty

Figure 3. Random field model: trajectory of bending moment (left) and simulation of maximal bending moment
(right).

The possibilities of more refined statistical methods, like confidence intervals for quantiles or robust
estimates, are left aside here, and we close our brief survey of classical probability in this example.

4.2. Fuzzy set modeling

In order to present a fuzzy model of the elastically bedded beam, we assume that the parameters
k and p are described by fuzzy numbers K and P . More generally, one could admit, e.g., loads
of the form p(x) =

∑n
i=1 aipi(x) as a combination of fixed shape functions pi(x) with parameters

ai, which in turn can be taken as fuzzy numbers Ai, i = 1, . . . , n. We adopt here the simple case
that both parameters are fuzzy constants and model the data as a non-interactive fuzzy vector
with two components (K,P ). This signifies that the joint membership function is given by the
formula π(K,P )(k, p) = min{πK(k), πP (p)}, hence the level sets are two-dimensional intervals. We
shall compute the fuzzy point values of the fuzzy response u(x) by applying the Zadeh extension
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principle to the solution operator

(k, p) → u(x) = Lx(k, p) =
p

4k4
,

see Subsection 4.1. By the discussion above, an α-level set of Lx(K,P ) is computed as the collection
of the values of the solutions attained when the parameters vary in the respective level sets Kα, Pα.

For the sake of exposition in the example to follow, we take both K and P as triangular fuzzy
numbers, centered around the values indicated in Subsection 4.1, namely

K = 〈12 , 1, 2〉 · 10−2, P = 〈0, 1, 2〉 · 10−8,

Then the (constant) fuzzy solution is simply given by the fuzzy number Lx(K,P ) = P/4K4. It is
depicted in Figure 4.

We observe that the fuzzy model consistently describes the fluctuations of the response in
dependence on the data variability. In addition, the α-level structure provides a good picture of the
sensitivity of the result.
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Figure 4. Fuzzy displacement u (left) and fuzzy solution (right, horizontal lines depicting α-levels) versus effect of
localization.

We now discuss a certain limitation of the (simple) fuzzy model. The semantics of fuzzy sets
allows the parameter p to vary in the range given by its fuzzy description, in the example its support
[0, 2 · 10−8]. If one permits non-constant realizations of the parameter p, the bounds predicted by
the fuzzy output may be exceeded. Indeed, assume that p jumps from 0 to 2 · 10−8 at the point
x = 0. This means that we have to solve Equation (9) with a load

p(x) =

{

0, x < 0,
p = 2 · 10−8, x > 0.

The corresponding displacement is

v(x) =

{

p
8k4

ekx cos kx, x < 0,
p

8k4
(2− e−kx cos kx), x > 0.

Taking the admissible value k = 1
2 · 10−2, it is seen that the graph of v exceeds the band described

by the fuzzy displacement with constant parameters.
This is an example of the effect, observed in other circumstances as well, that a localized

parameter fluctuation may produce a response not predicted by a simple fuzzy model. In Figure 4.2,
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the 0-level set of the fuzzy displacement is indicated by the horizontals u = 0 and u = 8, the curve
is the graph of v, and the other horizontals indicate level sets of the fuzzy displacement u for
α = 0.2, 0.4, 0.6, 0.8. Degree of possibility equal to one occurs at u = 0.25.

4.3. Random set modeling

As mentioned in Subsection 4.1, assuming that q and bc are normally distributed random variables is
rather artificial. The available information consists of a nominal value and a coefficient of variation.
One way of organizing this information is by means of a Tchebycheff random set as described in
Subsection 3.2. If the loading q, say, is preliminarily viewed as a random variable with unknown
probability distribution, but with expectation value µq and variance σ2

q , Tchebycheff’s inequality

asserts that the probability of the event {|q − µq| > σq/
√
α} is less or equal to α, where α ∈ (0, 1].

Let
Q(α) = [µq − σq/

√
α, µq + σq/

√
α].

As outlined in Subsection 3.2, we may use the Q(α) to define a random set on the space Ω = (0, 1],
equipped with the uniform probability distribution, the Tchebycheff random set arising from µq

and σ2
q .

We take up the example of Subsection 4.1 and apply this construction to the loading q with
µq = 10 and σq = 1 (from a coefficient of variation of 10%). This results in a random set Q, whose
contour function is depicted in Figure 5 (left).
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Figure 5. Tchebycheff random set for load (left) and probability box for resulting displacement (right).

In a similar way, we construct a Tchebycheff random set BC for the variable bc, using µbc = 40
and σbc = 4. To form the joint random set (Q,BC), the dependence of Q and BC has to be
modeled. To make computations easy, we settle for the so-called fuzzy set independence; that is,
the joint random set is also defined on Ω = (0, 1] with focal elements Q(α) × BC(α), α ∈ Ω (and
thus only focal elements corresponding to the same index α are combined). The random set data
can be propagated through the mapping that gives the displacement u(q, bc) = q/bc, resulting in a
random set U with focal elements U(α) = u(Q(α)×BC(α)), the set of values attained when (q, bc)
range in Q(α)×BC(α).

The evaluation of the interval bounds for U(α) requires a global optimization. It is useful to
describe the output random set as a probability box, which is bounded by the lower and the upper
distribution functions

F (x) = P (−∞, x], F (x) = P (−∞, x].

The resulting probability box for the displacement is shown in Figure 5 (right).
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The probability box immediately gives information on quantile ranges. For the event A = {U ≥
0.5}, for example, we get the probability interval [P (A), P (A)] = [0, 0.04], which is more credible
than the point estimate P (A) ≈ 3.9 · 10−6 from the Subsection 4.1 (obtained under the stringent
assumption that q and bc were normally distributed).

An even more realistic combination of the random field model with random set parameters will
be described in the following subsection.

4.4. A hybrid model

A combination of stochastic differential equations with random set parameters has been recently
worked out in (Schmelzer, 2010). This can be used in the dynamics of structures. Earthquake
induced vibrations can be modeled by stochastic processes, like colored noise, whereas uncertain
material parameters can be modeled by random intervals. We shall demonstrate a more modest
hybrid model for the elastically bedded beam. The load q will be modeled as a random field as
in Section 4.1, while the bedding parameter bc will be modeled as a random set. Of course, the
model can be generalized to higher levels by also taking the field parameters σq and ℓ as random
sets, etc. For the sake of simplicity, we shall take bc as an interval and the field parameters as in
Section 4.1, i.e., µq = 10, σq = 2, ℓ = 100. For bc we choose the interval [20, 40], which has the
previously assumed mean value for bc as its upper boundary.
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Figure 6. Hybrid model: Single interval trajectory of bending moment (left) and p-box for maximal bending moment
(right).

The resulting output will be a set-valued stochastic process; more precisely, each trajectory will
be interval-valued. Figure 6 (left) shows a single trajectory of the bending moment. In order to
assess the statistical properties of the output, a sample of trajectories has to be generated. From
there, one can compute, e.g., the upper and lower distribution functions of the maximal bending
moments in the beam. This is a critical quantity on which the failure criterion from Section 4.1 is
based. A p-box of the maximal bending moment is shown in Figure 6 (right), based on N = 500
trajectories of the field. From the list of computed values (interpolated using a kernel smoother)
one may obtain upper and lower probabilities that given limits are being exceeded, e.g.,

P (Mmax > 6000) ≈ 6.51 · 10−5, P (Mmax > 6000) ≈ 2.05 · 10−2,

P (Mmax > 8000) ≈ 0, P (Mmax > 8000) ≈ 1.21 · 10−3.
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5. Conclusion

This brief exposition presented an overview over various important aspects of uncertainty modeling,
including axiomatic, semantic, and numerical aspects. Necessarily, a lot of important additional
topics had to be left aside. Concerning families of probability measures and random sets, we mention
the differing lower/upper probabilities obtained from families of random variables versus the random
set corresponding to the family (Fetz and Oberguggenberger, 2015). Further issues are Monte Carlo
simulation of random sets and imprecise stochastic processes, as well as sensitivity analysis based on
random sets (Oberguggenberger, King and Schmelzer, 2009; Oberguggenberger, 2015). For interval
methods and their application in finite elements we refer to (Moens and Vandepitte, 2005; Muhanna,
Zhang and Mullen, 2007); for recent results on interval methods related to stochastic processes, see
(Sofi, 2015; Muscolino, Santoro and Sofi, 2016).
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Abstract: Traditional approaches to handling uncertainty in agent-based models employ Monte Carlo 
methods to randomly sample parameters and probabilistically determine whether and how a behavior or 
interaction rule is realized by an individual agent. A simulation of all agents thereby represents a single 
realization from among many possible scenarios, and simulations with many replications are used to reveal 
differential probabilities and the likelihoods of extreme results. Unfortunately, Monte Carlo is a poor way to 
project epistemic uncertainty through a complex model, and it is an unsatisfying scheme for representing 
the uncertainty about volitional choices of agents. Adding epistemic uncertainty to agent-based models 
properly requires the ability to (1) characterize stochastic drivers imprecisely, (2) specify agent attributes 
and other quantities as intervals, probability distributions, or p-boxes, and (3) execute behavior rules in a 
way that respects uncertainty in their conditional clauses. When uncertainty makes the truth value of the 
conditional clause of any rule unclear, the simulation should hold that the rule both fires and does not fire. 
This may result in subsequent uncertainties elsewhere in the simulation including the status of attributes of 
agents, even perhaps whether an agent exists or not. These facilities advance agent-based modeling to 
uncover a more comprehensive picture of the effects of epistemic uncertainty, which can be vastly more 
important than aleatory uncertainty. We compare this approach with traditional simulation using only 
Monte Carlo methods to reveal the differences between these two approaches to uncertainty. 
 
Keywords: agent-based models, epistemic uncertainty, Monte Carlo simulation, p-boxes, intervals 
 
 

1. Introduction 
 
Predictive failures are more common in probabilistic modeling and simulation than they should be. For 
instance, NASA estimated the risk of catastrophic failure of its Space Shuttle to be 1/10,000 per flight, but 
its observed failure rate was about 1 per 70 flights (Hamlin et al. 2011; Oberkampf and Roy 2010). The 
National Weather Service and the Army Corps of Engineers strongly underestimate risks of “100-year 
floods” and miscommunicate uncertainties about flooding risks (Morss and Wahl 2007; NRC 2006; NWS 
1998). Observed failures and near-misses found at the Diablo Canyon Nuclear Power Plant reveal gross 
understatement of its assessed risks (Lochbaum 2011). Failure cascades in electricity distribution systems 
are more common than they are forecasted to be (RAWG 2005; USCPSOTF 2006). Probabilistic 
assessments understating risks in the financial industry precipitated the Great Recession (Savage 2012; 
Silver 2012). These are not random rare events in a discipline that estimates and controls risks well overall. 
They are not the unlucky but expected tail events sometimes called “noble failures”. They seem instead to 
be wholesale errors which are the result of pervasive and systemic errors that undermine the credibility of 
all modeling and simulation efforts. The comment by a prominent engineer that the 2007 bridge collapse in 
Minneapolis was a “billion to one” event typifies the raw fact that uncertainties are sometimes not well 
understood in engineering.  
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     What can be done about this situation when such predictive failures are intolerable? We believe that a 
pervasive cause of these predictive failures is neglecting or mishandling uncertainties. This paper focuses 
on practical methods for introducing uncertainty into agent-based models because such models are widely 
used and growing in importance within engineering. The problem of correctly handling uncertainties in this 
context also seems to be rather subtle. 
 
 

2. Kinds of Uncertainty 
 
In the past, uncertainty analysis considered the source of uncertainty to be its salient aspect, so modelers 
talked, for example, about their parametric uncertainty or their model-form uncertainty. A more modern 
view is that the nature of the uncertainty, rather than its source, is a more important characteristic. We can 
distinguish between two main forms of uncertainty: epistemic and aleatory. Aleatory uncertainty refers to 
the variability or stochastic fluctuations in a quantity through time, variation across space, manufacturing or 
genetic differences among components or individuals, or similar heterogeneity within some ensemble or 
population. The word aleatory comes from alea, the Latin word for dice. This is considered to be a form of 
uncertainty because the value of the quantity can change each time one looks, and we cannot predict 
precisely what the next value will be (even though the distribution of values may be known). Epistemic 
uncertainty, on the other hand, refers to the lack of full knowledge about a quantity that arises from 
imperfect measurement, limited sampling effort, or incomplete scientific understanding about the 
underlying processes that govern its value.  
     These two forms of uncertainty have important differences. Epistemic uncertainty can in principle be 
reduced by empirical effort; investing more in measurement and study of a system should yield better 
precision. Aleatory uncertainty, in contrast, can sometimes be better characterized, but cannot generally be 
reduced by empirical effort. Epistemic uncertainty depends on the observer and the observations made. 
Aleatory uncertainty does not depend on an observer at all. It exists whether or not anyone witnesses it, like 
the sound waves emanating from the proverbial tree falling unseen in the forest. Although epistemic and 
aleatory uncertainty can sometimes be like ice and snow in that their distinction can be difficult to discern 
through complicating details (and sometimes one can change into the other depending on the scale and 
perspective of the analyst), the macroscopic differences between these two forms of uncertainty are usually 
obvious and often significant in practical settings. 
 
 

3. Agent-based Modeling 
 
Agent-based models (Wooldridge 2009) arose from early research on cellular automata (Gardner 1970) 
when computing first became widely accessible. These models were generalized to allow individual objects 
to move about on the plane or in space. Simulations also endowed the objects with goals and the ability to 
make choices in complex environments, and even emulated how agents might learn from their past 
interactions and experiences to adapt and evolve within the simulation. As a consequence, agent-based 
models have the potential to capture emergent behavior that was not conceived a priori. Most recently, the 
models have considered more than a single kind of entity interacting with each other. These include agent-
based models, multi-agent simulations, individual-based models, and swarm models. Today, these 
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heterogeneous agent-based models are considered a new paradigm for design in computer science with self-
structuring software systems (Shoham and Leyton-Brown 2009), and models for distributed decision-
making and problem solving (Weiss 2001).  
     The practical applications of agent-based models are many and include fleet and supply-chain 
management, logistics, portfolio planning, forestry, biological resource management, epidemiological 
modeling, and analysis of coalitions and joint mission planning. Ilachinski (2004) described the use of 
agent-based models in modeling military conflicts, which is natural because of the importance in that 
context of nonlinear interactions among elements organized in command-and-control hierarchies of often 
fluctuating coherence. Simulations using autonomous agents to model individual behaviors represent a 
bottom-up approach to synthetic modeling. They can complement or perhaps supersede conventional 
analytic and reductionist approaches, which may be less useful in the study of emergent patterns of self 
organization that commonly arise in complex systems of systems. Although much effort has been devoted 
to developing this approach, and to combining it with uncertainty analysis (e.g., Wu et al. 2003), further 
work is needed, particularly workable schemes to express and propagate not just aleatory but also epistemic 
uncertainties about agent status and rule outcomes through simulations. 
 
 

4. What’s Wrong with Sampling 
 
A traditional sampling approach to uncertainty projection in engineered systems routinely and often 
profoundly underestimates the overall uncertainty that should be associated with outcomes (Atwood 1985; 
Ferson and Ginzburg 1996; Oberkampf and Roy 2010; Ferson and Siegrist 2012; Savage 2012). Figure 1 
illustrates this underestimation, showing Monte Carlo results in a tangle of trajectories whose overall 
uncertainty grossly underexplores the true range of possibilities arising from the epistemic uncertainty 
about the outcome circumscribed by outer bounds. The actual uncertainty is often much wider, sometimes 
much larger than that predicted by ordinary probability methods such as Monte Carlo simulation, Latin 
hypercube simulation, or second-order Monte Carlo. The outer bounds are not necessarily worst-case 
outcomes, but they may be envelopes of the plausible scenarios in a proper accounting of uncertainty that, 
unlike traditional Monte Carlo approaches, does not make unjustified assumptions about independence 
among variables, and does not use equiprobability or uniform distribution assumptions to represent 
incertitude (empirical ignorance). We can sometimes observe the difference between the Monte Carlo 
simulations and the outer bounds in Figure 1 to be several orders of magnitude. Sometimes the Monte Carlo 
results are in the middle of the true possible range of outcomes on some scale as depicted in the figure, but 
this is not always the case. While the Monte Carlo results may ‘fill up’ the possible range for some intervals 
in time dependent models, this is rare. When it does happen in time-dependent models, it is often an 
ephemeral occurrence at the start of a simulation or at pinch points or ranges were the direction of 
trajectories shift. Monte Carlo sees uncertainty through a glass darkly, in general. Variants of Monte Carlo 
methods are only marginally different. Latin hypercube sampling, for example, is usually worse at 
identifying extreme events. Second-order Monte Carlo does generally produce slightly wider results, but 
these trajectories form a halo around the regular Monte Carlo results, and they also come nowhere near to 
filling up the range of possible outcomes in most cases.  
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Figure 1. Discrepancy between the true possible range (outer bounds) and Monte Carlo realizations. 
 
     Often, what strategists and planners actually need to know is the range of possible outcomes, mostly 
because they are especially concerned with the extreme cases. There are the outer bounds shown in 
Figure 1. Unfortunately, Monte Carlo simulation is well known to be a very poor technique for uncovering 
this range. David Alderson (Alderson et al. 2012) of the Naval Postgraduate School has noted that “Random 
sampling is terrible at finding worst-case scenarios, although terrorists are pretty good at it.” He was talking 
about estimating the reliability of transport networks and supply chains and their susceptibility to 
malevolent disruption, but the observation is actually quite general. 
     The problem is related to what is sometimes called the “curse of dimensionality”. It can be illustrated 
with a very simple example. Suppose we are interested in estimating the possible range of the sum of 30 
uncertain values each constrained to the unit interval. It is clear that this range is an interval between zero 
and 30. Random sampling, in which uniform random deviates independently sampled from each of the 30 
unit intervals are added together, reveals a range that is almost always much smaller. If there are 100 such 
sample summations adding 30 deviates together, the output range of the sum is roughly one third of what it 
should be. Even with a million replications, the observed range of sums is only half as wide as it should be. 
Using different distributions other than uniform or even systematic rather than uniform sampling for the 
addends does not help widen the result appreciably. This underestimation worsens dramatically as the 
number of inputs grows. 
     Some analysts argue that the larger bounds are unreasonable characterizations of uncertainty and insist 
that the narrower tangle of Monte Carlo outputs for the example above is actually correct. They say that it 
would be silly to suppose that all 30 of the addends could be extreme in the same direction at the same time.  
Such analysts will often be surprised by the outcomes of real-world systems, because this constellation of 
extremes can indeed be realized in the outcomes of real-world systems. Disasters and extreme events are 
often born when multiple things go wrong together. Before the 2007 financial crisis, many analysts 
asserted—and apparently also really believed—that it would be essentially impossible for a significant 
fraction of the hundreds of mortgages bundled together in securities to all default. But the financial analysts 
neglected to account for the dependence relationships in risk among these mortgages that made them far 
from independent. Contracting home markets affected lots of mortgages at the same time, and there were 
unfortunate positive feedbacks that made the situation worse. The more mortgages that defaulted, the harder 
it became for any homeowner to stay above water. These examples are very simple instances of the general 
problem. When the elements become more complex than mortgages that either default or do not, and the 
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functions relating them together become more complicated than simple addition, the potential for 
dependencies to play a dominant role in the overall risk of failure is both more likely and harder to foretell. 
     Why do regular probabilistic analyses often badly underestimate risks? There are several reasons, but the 
most common and significant ones are 

 Unjustified use of independence assumptions or overly precise dependence assumption, 
 Inappropriate use of equiprobability and uniformity assumptions, 
 Underestimation of the uncertainties of original measurements, 
 Modeling volitional choices with distributions as though they are random, 
 Using averaging as an aggregation, and 
 Making assumptions for the sake of mathematical convenience (wishful thinking). 

For example, standard approaches based on probability theory almost always assume independence among 
variables, even when there is little evidence or argument to support such an assumption. In fact, when there 
is no information about a dependency, many consider this to be a reason to assume independence. This is 
profoundly wrong in any risk-analytic or uncertainty-analytic context, and the consequences of this are 
underestimated risks and incorrect assessments of uncertainty. The standard probabilistic approaches 
grossly understate the uncertainty when they fail to account for the correlations, dependencies, and 
interactions among the components and among stochastic driver variables (Hartung et al. 1985; Hickman et 
al. 1983; Hokstad and Rausand 2008). These connections that join together the elements of the model are 
frequently neglected in the modeling exercise. In principle, each such connection should be characterized. 
There are two reasons that such a task is generally extremely hard: First, there are often many dependencies 
to worry about. If there are n elements in a system, there may be up to (n2 – n)/2 pairwise interactions 
between those elements, and this is just the beginning. There may also be triple-wise or even higher-level 
interactions as well, which are essentially never even considered in most models. The second reason it is 
difficult to address these interconnections in modeling is that dependence between stochastic variables can 
be complex. If we’re lucky, one inter-variable dependence can be fully characterized by a simple real value 
like a correlation coefficient, but this is often not really possible because the dependency is nonlinear. We 
know that such complex interactions can and do exist among many variables, but human intuition is not 
well adapted to consider them, especially when nonlinearities, trade-offs, feedbacks, problem cascades, and 
other complexities complicate the story. 
     Poor models of dependences are not the only important reason that naïve Monte Carlo methods 
understate uncertainty. Space limits preclude a full discussion of each of the other causes mentioned above. 
Ferson and Ginzburg (1996) review the problems that arise for risk analyses from using assumptions of 
equiprobability or uniform distributions to model incertitude. Henrion and Fischhoff (1986) review the 
apparently pervasive and systemic underestimation of measurement uncertainties for physical constants. 
The situation is probably even worse for routine test-site and field measurements (Morgan and Henrion 
1990; Youden 1972). On account of these issues, exclusively using Monte Carlo or similar traditional 
probability techniques in risk, reliability, or uncertainty assessments for critical infrastructures is unsound 
when extreme events are the focus. This crosses over to the ridiculous for modeling behavior when 
malevolent human actors are involved such as in warfare, terrorism, arson, crime, and competition. Modern 
approaches (Beer et al. 2013; Ferson and Ginzburg 1996; Walley 1991) to handling epistemic uncertainty 
that treat it differently from aleatory uncertainty and respect epistemological limits on inferences are 
designed to remedy these problems and provide reliable characterizations and conclusions that do not 
depend on making assumptions that analysts cannot justify or do not even believe. 
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     Considerable progress has been made recently in developing algorithms for numerical calculations that 
respect and distinguish epistemic and aleatory uncertainty (Beer et al. 2013; Ferson and Siegrist 2012; Sentz 
and Ferson 2011). Figure 2 below shows several examples of ‘uncertain numbers’, where the abscissas are 
arbitrary axes of real values. A probability box or p-box (depicted at the far right) is the most general form 
because it has both aleatory and epistemic uncertainty. In Bayesian analyses, this structure is also called a 
distribution band (Berger 1994; Basu and DasGupta 1995). They are closely related to what frequentists call  
meta-distributions or second-order distributions (Vose 2008), and to the collections of probability 
distribution functions known in the theory of imprecise probabilities as credal sets (Walley 1991). P-boxes 
arise in robust Bayes analyses in which there is doubt about the prior that should not be neglected or 
condensed into a single distribution, or when there is non-negligible measurement error about input data 
that induce a family of likelihoods rather than a unique one. P-boxes can also arise from partial constraint 
information such as might be available from an incomplete or faulty set of sensors. A p-box is defined by 
left and right bounds, which delimit the class of probability distributions denoted by the p-box as in the 
rightmost graph in Figure 2. When those edges coincide, the class has only a single member, which is a 
precise cumulative probability distribution such as the second graph from left in Figure 2. This distribution 
represents aleatory uncertainty but not epistemic uncertainty. In contrast, the edges of the p-box could be 
rectangular in which case the p-box degenerates to an interval (third graph in Figure 2), which might consist 
entirely of epistemic uncertainty. Finally, the leftmost graph in Figure 2 depicts a known, fixed quantity, 
which we might call a scalar. It is a completely degenerate kind of uncertain number in that it has neither 
aleatory nor epistemic uncertainty. 
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Figure 2. Bestiary of uncertain numbers. 
 
     We know how to do math on these uncertain numbers. Mathematical operations such as addition, 
subtraction, multiplication, division, minimum, maximum, powers, logs, roots, etc. have been worked out 
and implemented in stable software (Ferson et al. 2003; Ferson 2002). These operations are closed in the set 
of uncertain numbers, except in obvious cases that involve division by zero or taking the log or root of 
negative values. The results can be proven to be rigorous in that the bounds are guaranteed to surely contain 
the actual value or distribution given the uncertainty. Moreover, in many cases defined by well understood 
conditions, the results can also be proven to be best possible, which is to say that the bounds cannot be 
made any tighter without reducing the uncertainty about the inputs. P-boxes are a relatively simple way to 
express both aleatory and epistemic uncertainty about quantities; they are much simpler than credal sets 
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from the theory of imprecise probabilities (Walley 1991), fuzzy numbers (Kaufmann and Gupta 1985) or 
more general info-gap structures (Ben-Haim 2001), or even DempsterShafer structures (Ferson et al. 
2003). This simplicity gives analysts great power to do practical computations at moderately large scales 
that are simply not achievable under the more delicate theories. The application of p-boxes as models of 
uncertainty in practical assessment problems is called probability bounds analysis. The Wikipedia article on 
the topic (http://en.wikipedia.org/wiki/Probability_box) lists dozens of applications published over the last 
decade. The p-box approach can be used to improve uncertainty analysis and the analysis of risk 
assessments in general by providing automatic sensitivity analysis for a probabilistic assessment. 
 
 

5. Generalizd Agent-Based Modeling 
 
There has been considerable research in the interface between uncertainty analysis and agent-based 
modeling (Faanes and Skogestad 2004; Zellner 2008; Bobashev and Morris 2010; Hancock et al. 2010; 
Hassan et al. 2010; Harp and Vesselinov 2011; Fonoberova et al. 2013; Magliocca and Ellis 2013), but it 
has focused exclusively on using agent-based models to analyze aleatory uncertainty, rather than what is 
proposed here, which is to project both forms of uncertainty through agent-based models. 
     Agent-based models represent and follow agents or meta-agents, which are composed of multiple, 
partially independent agents. Every agent consists of a name or identifier and a list of attributes, each of 
which is a vector of real or categorical values that characterize its status. The models also include rules 
governing the temporal evolution of agents and interactions among agents within the simulation. There may 
also be environmental variables such as weather shared by all agents that are determined by exogenous 
stochastic drivers that introduce randomness into the system. Traditionally, the behaviors and interactions 
of agents are simulated using randomly sampled parameters that probabilistically determine whether and 
how a rule is realized by an individual agent. A simulation thus represents a single realization from among 
many possible. Each simulation is a plausible scenario without information about the likelihood of that 
scenario. Monte Carlo replications of such simulations are typically employed to show differential 
probabilities and the likelihoods of extreme results.  
     As explained above, however, Monte Carlo is a very poor way to project epistemic uncertainty through a 
complex model, and an even worse way to represent the uncertainty about the volitional choices of friends 
or especially foes. Adding epistemic uncertainty to agent-based models in a proper way will require the 
ability to  

1) Characterize stochastic drivers imprecisely,  
2) Specify agent attributes and other quantities as uncertain numbers, 
3) Execute rules in a way that respects uncertainty in their conditional clauses, and 
4) Accept user specifications of uncertain numbers. 

     We address each of these facilities below. Through their development, agent-based modeling based on 
Monte Carlo methods can be generalized and expanded to uncover a more comprehensive picture of the 
effects of epistemic uncertainty.  
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6. Uncertainty about Stochastic Drivers 
 
The traditional way to characterize a modeled variable that is influenced by stochastic drivers is to specify a 
precise probability distribution for the variable. Such distributions are usually derived in one of three ways: 
statistical analysis of available sample data collected about the variable, a forecast about it from related 
information, or informed judgment produced by the modeler or elicited from experts. Yet these distributions 
are rarely known with the confidence that is implied by employing a precise specification. For instance, 
there can be substantial epistemic uncertainty about diurnal, seasonal and longer-term patterns of weather 
and space weather that may affect threat detectability and response speeds of movable assets. We know 
future environmental conditions will be variable, but planners cannot forecast their precise probability 
distributions even in the short term (cf. Kharin 2009). The further into the future the prediction must be 
made, the broader the uncertainty will likely be. Conscientious assessments today characterize the epistemic 
uncertainty about probabilistic forecasts derived from quantitative models. One of the simplest ways to do 
this is with a p-box (Ferson et al. 2003). Even when the distribution is thought to be stationary and there are 
actually random sample data available to estimate its shape and parameters, the sample size may be limited, 
which means there is inferential uncertainty about any empirically estimated distribution. Balch (2012; 
Ferson et al. 2013) described ways to derive p-boxes from random sample data that respect and propagate 
this empirical uncertainty. P-boxes can also be obtained directly in expert elicitations, either from 
introspection by a single expert, or by forming an envelope of the distributional predictions from several 
experts (Linkov and Burmistrov 2003; Sentz and Ferson 2002; Ferson et al. 2003). 
     If we use a p-box rather than a precise probability distribution to characterize a stochastic driver, how 
would the agent-based model use the p-box in simulations? There are essentially two ways, depending on 
the nature of the uncertainty projection that is intended. The left graph in Figure 3 below depicts a precise 
cumulative probability distribution for a random variable that ranges between 3 and 6. Also depicted in the 
graph is a random deviate being generated from the distribution via inverse transform sampling (a uniform 
random number between zero and one on the probability axis is transformed into a random deviate from the 
distribution by mapping it to the abscissa through the cumulative distribution). The middle graph in the 
figure depicts a p-box over the same range that might express the epistemic uncertainty about the 
distribution in question. The first way to take into account the epistemic uncertainty of the p-box is to 
generalize the inverse-transform sampling approach that generates random deviates. Instead of producing a 
single scalar number for each uniform probability value, the p-box yields an interval of possible values for 
each probability value. The interval deviates can then be used in agent-based modeling software augmented 
with the ability to compute with intervals just as well as regular scalar numbers.  
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Figure 3. Three depictions of sampling aleatory uncertainty about a stochastic driver. 
 
     The second way to account for epistemic uncertainty in the p-box is to project the entire p-box through 
the calculations in the model. This idea is depicted in the rightmost graph in Figure 3 above. Doing this 
characterizes all possible scenarios at the same time, each weighted by their respective probabilities as well 
as can be specified under the acknowledged epistemic uncertainty of the p-box. This way of handling the p-
box produces no additional complexity. In the exceptional case lacking epistemic uncertainty, where the 
stochastic driver is characterized by a precise distribution, the first way produces a single scalar number and 
the second way produces the whole probability distribution. In the other special case lacking aleatory 
uncertainty, where the driver is characterized by a simple interval, the first and second ways both produce 
the same deviate, which is the whole interval itself. Whatever is generated, whether it is a point value, an 
interval, a distribution, or a p-box, the structure can be projected through the calculations that depend on 
this stochastic driver. 
 
 

7. Uncertainty in Agent Attributes 
 
Attributes of the various agents are updated during the model simulation. In general, attributes are updated 
in one of two ways. Either the new value of the attribute is computed and assigned to that attribute replacing 
any value already there, or a modification term or factor is computed and then combined with the current 
state of the attribute. The new value can be any uncertain number, i.e., a scalar, probability distribution, 
interval, or p-box. For instance, the mass of a missile may be one of its attributes which should be modified 
if the missile releases decoys or chaff. The amount of the modification depends on an estimation of the 
mass of the released material. Note that, when an attribute’s value is to be replaced, the uncertainty in the 
current value is irrelevant, but if the current value is to be modified, its uncertainty cannot thereby decrease. 
When an attribute has more than a single dimension, such as the current position of an agent specified by a 
vector consisting perhaps of its longitude, latitude and elevation, issues of dependency in the uncertainties 
of those components can arise (Miranda et al. 2013). In many cases, modelers will account for these 
dependencies in the rules they specify that govern agents’ evolution. For instance, when a sea-surface asset 
is attacked, its sensors may perform differently or go off line. There may be epistemic uncertainty about 
these dependencies, and in principle these dependencies can be handled in the same way as other 
uncertainties in dependencies between variables, as modeled in probability bounds analysis (Ferson et al. 
2004). 
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     There may be other variables besides the attributes of agents and stochastic drivers that the software 
must update and which may therefore also have uncertainty. For instance, tallies, traces and synopses used 
to report the results and predictions of the simulation must be computed. Also, if many rules use the same 
calculation, the modeler may chose for efficiency’s sake to define a parameter within the simulation to the 
hold the result of the calculation so that it can be used by all the rules without recomputing. 

8. Uncertainty in Rule Conditions 

Agent-based modeling consists of a system of rules specified by the modeler that govern the behavior and 
evolution of the agents. A simple rule typically has two parts, the condition and its consequence. The 
condition is the if part that determines whether the consequence is to occur. The consequence is the then
part that specifies what should happen if it does. Compound rules can have an else part that specifies what 
should happen otherwise. The previous section described how agent attributes and other parameters can be 
updated with uncertainties when rules are applied that replace or modify their values. This section will 
review how uncertainty can be propagated through the if parts of the rules. 
     Consider a situation in which there is uncertainty about the inputs used in a binary rule, say, to fire an 
asset or not to fire the asset. Suppose that the rule is stated as  

If A < , then fire, else don’t fire,
where A is the value of some environmental parameter or an attribute of some agent and  is a threshold set 
by the modeler who specified the rule. When the uncertainties about A and  are both characterized as 
intervals, there are only three cases for the condition A < . The first case is when the uncertainty about A
and  are such that it is perfectly clear that A <  is true. This case is depicted in the left graph in Figure 4 
below, where the horizontal axis gives the magnitudes of the uncertain numbers. The value of the rule’s 
condition is one, representing true, so we fire. The second case, depicted in the middle graph of Figure 4, is 
when the value of A is surely larger than the threshold  despite their respective uncertainties. The value of 
the condition A <  in this case is zero, for false, so we don’t fire. The third case is when the two 
uncertainties overlap so that we cannot be sure whether A is larger or smaller or equal to the threshold . In 
this case, we say the value of the condition is the interval [0,1], which we call the ‘dunno interval’. Because 
of the epistemic uncertainty about the terms, we do not know whether we should fire or not. 

A  A A 

Fire Not fire
Fire

Not fire

Figure 4. Three possibilities about whether A is less than  given their respective uncertainties: yes, no and not sure. 
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     This epistemic uncertainty about the rule’s condition should be fully propagated through the simulation. 
Doing so means that we fire and not fire at the same time. This contradiction can be resolved in software by 
modeling two universes, one where the action of firing the asset occurs and one where it does not. But 
instead of following two diverging timelines requiring separate instantiations, the software will translate the 
consequences of the ambiguity of firing/not firing back into intervals in the attributes of the agents 
involved. This might mean, for instance, that the agent which was the target has status of both destroyed 
and intact. And, unlike the proverbial cake, we both consumed the asset by firing it, and yet still have it to 
fire later. Any behavior or result that depends on, or could be produced by, an agent is multiplied by its 
existence attribute so as to project the uncertainty about whether the agent exists to any outcomes that 
depend on the agent. If the agent surely exists, its existence attribute is 1, and outcomes are unaffected. If 
the agent surely does not exist, the attribute is 0, and the outcomes are nullified. If the existence attribute is 
dunno, the outcome is the interval between the full-strength outcome and a nullified outcome. 
     Whether the resulting ambiguity in attributes of agents matters or not depends on the dynamics of the 
system and the other uncertainties that may be present. This approach to agent-based modeling requires a 
new constitutive attribute ‘exists’, which, like an agent’s name or identifier, must always be present in order 
to handle such cases. Aside from all the agents that surely exist, the software can also keep track of some 
agents that may or may not exist. We do not expect this approach to epistemic uncertainty in agent-based 
models to predict the future perfectly. What it should do is capture all possible scenarios given the available 
information and model structure and compute best-possible bounds on the probabilities associated with 
those scenarios. This harkens to the film Men in Black 3 and its character Griffin who is a “fifth-
dimensional” alien who sees all possible futures at the same time. He cannot tell what will happen but only 
what the possibilities and probabilities are, which is still very useful. It seems to us that Griffin’s 
information is much more valuable than predictions from an oracle that are precise but often wrong, as are 
the results of traditional agent-based models. Predicting the future is dangerous because we sometimes 
believe our predictions, so the predictions ought to be guaranteed in some sense and not just merely 
possible. 
     Of course, the A and  parameters may not always be intervals. They could also be probability 
distributions or p-boxes, in which case the resulting value of the rule’s condition may not be one of the 
three simple logical values (zero for false, one for true, or the interval [0,1] for dunno). If aleatory 
uncertainty is present, issues of dependence between the terms of the comparison arise. Modelers should 
specify whether and how the parameters are dependent if they have this knowledge. The default behavior of 
the software is to presume their dependence is unknown and to use the Fréchet (1935; Hailperin 1986) 
inequalities to compute the logical value of the condition. The requisite mathematical framework for 
defining the logical values of magnitude comparisons between arbitrary p-boxes has been worked out, and 
stable software exists to compute them (Ferson 2002).  
     It turns out that magnitude comparisons among uncertain numbers of any kind produce at worst only 
intervals. Comparing uncertain numbers with the <, >, , and  operators in general yields interval logical 
values (Hailperin 1986). The exceptions are when (i) both operands are scalars, in which case the result is a 
Boolean value, (ii) one operand is a scalar and one is a probability distribution, in which case the result is a 
frequency, and (iii) both operands are probability distributions and they are independent or have another 
precisely specified dependence function, in which cases the comparison yields a frequency. For example, 
the comparison 3 < uniform(2,6) gives the scalar 0.75, but the comparison [1,3] < uniform(2,6) gives the 
interval [0.75, 1]. Assuming the operands are independent, the comparison uniform(2,4) < uniform(1,3) 
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gives the scalar 0.125, but without an assumption about their dependence, the comparison instead gives the 
big interval [0, 0.5]. As we saw above, comparing intervals that overlap at more than a single point always 
produces the dunno interval [0,1]. No matter what kind of uncertain numbers are compared, the result is 
always a scalar or an interval and never anything more complex. Rule conditions that produce these scalars 
and intervals are also translated to existence attributes as appropriate. Existence attributes are uncertain 
logical values and may take the form of any p-box on the unit interval, including scalars and arbitrary 
subintervals of [0,1]. The same multiplication convention used to project dunno uncertainty can be used to 
propagate the epistemic and aleatory uncertainty encoded as interval or scalar frequencies and probabilities. 
Despite the simplicity of magnitude comparisons always producing interval logical values, the value in the 
condition of a rule may not be an interval. If the rule is expressed in reference to an event which is 
described by its probability, the value of the condition is in general an uncertain logical value. These can 
include probability distributions and p-boxes on the unit interval. Our strategy for handling uncertainty in 
the rule condition for such cases is the same as was used before for magnitude comparisons. The 
uncertainty, which can include both epistemic and aleatory features, implies an ensemble of ensembles of 
possible universes expressing a class of different frequencies. We do not have to instantiate or even 
envision the entire population of possible universes. Indeed, we could not do so. Instead, we translate the 
uncertainty from those possible universes back into the existence attributes. For magnitude comparisons, 
these attributes were only intervals, but in the general case with arbitrary conditions, they will be uncertain 
logical values characterized by p-boxes. The multiplication convention can again be used to project the 
uncertainty whenever an agent acts or produces something that affects other agents or parameters. 
     The general issue of dependency in agent-based modeling is addressed in various ways. It is usually the 
job of the modeler to understand and represent in the model the basic functional dependencies that tether 
agents together and link stochastic processes, including relevant command-control chains, cooperations and 
collaborations, agent hierarchies, learning processes, cross-referential decision making, and other nonlinear 
interactions and mission dependencies. The software will have a sufficiently flexible language for 
specifying rules to develop these dependencies whenever they are understood by the modeler. However, we 
believe that modelers often cannot be aware of all the dependencies in a system that may become 
significant in some context. For this reason, the software will have default features that produce 
conservative treatments of uncertainties even when the modeler lacks details about the interdependencies 
among the components of the model. When a modeler is confident that two processes cannot interact, 
because they are distant in space or time or causation, this fact can be captured to improve (tighten) the 
propagation of uncertainty by using independence assumptions. But, when the modeler does not make a 
conscious decision to declare the processes independent, they are treated by the software as potentially 
interacting. The software does this by employing mathematical operations that generalize the classical 
Fréchet inequalities which make no assumptions whatsoever about inter-variable dependencies (Frank et al. 
1987; Williamson and Downs 1990; Ferson et al. 2003).  
     Compound conditions consist of functions of logical quantities combined with AND, OR and NOT 
operations. The mathematical definitions and software implementations needed to handle compound 
conditions composed from elements with epistemic and aleatory uncertainty are exactly the same as are 
used in the analysis of fault trees, and present no special problems in the context of agent-based models. 
Whenever those elements—which are the operands of the logical operations—are uncertain logical values, 
whether coming as magnitude comparisons (which are always intervals) or arbitrary p-boxes on the unit 
interval, the logical functions built from conjunctions (AND), disjunctions (OR) and negations (NOT) are 
always still uncertain logical values. At worst, these are p-boxes on the unit interval which we have already 
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described how to handle. The issue of stochastic dependence arises whenever multiple logical elements are 
combined, and the software supports a fairly rich array of possible assumptions about these dependencies, 
including independence and the Fréchet case making no assumption at all, perfect and opposite dependence, 
positive- and negative-sign dependence, and dependence parameterized by various indices including 
Pearson, Kendall and Spearman correlations coefficients (Ferson et al. 2004; Nelsen 1986; 1987). 
 
 
 
 
 

9. Can Uncertainty Grow Too Wide? 
 
This paper has argued that the uncertainty associated with results from probabilistic modeling and 
simulation is often underestimated, particularly with agent-based models. Is it possible that, in our zeal to 
not underestimate uncertainty, we might overestimate it? Can the uncertainty grow wider than in 
mathematically justified? In fact, there are reasons one might worry about this. 
     Although it can always be guaranteed to rigorously enclose the actual uncertainty, naïve application of 
bounding methods of uncertainty propagation can sometimes yield results with unnecessarily inflated 
uncertainties (Beer et al. 2013). In such cases, the uncertainty is not characterized in a best-possible way 
and is overly conservative. This inflation usually arises either from repeated variables (Manes 1982), which 
the interval analysis community knows as the “dependency problem”, or from the “wrapping effect” 
(Moore 1966) which can occur in multivariate problems when there is inter-variable dependence does not 
fit well into a rectangular multivariate box. Uncertainty inflation problems may be common and dominating 
in some complex calculations, and, if they are, special methods must be employed to keep the artifactual 
inflation of uncertainty to a minimum. Practical approaches to handling the problems have been worked out 
in several fields where the repeated variable problem has been encountered, including finite-element models 
(Zhang et al. 2012), differential equation models (Enszer et al. 2011), statistical analyses (Ferson et al. 
2007; Nguyen et al. 2011).  
     We have already mentioned that the evaluation of epistemic uncertainty about logical quantities can be 
improved by reducing the replications of uncertain values in the expressions. The same is true for the 
bounding calculations used in the generalized agent-based modeling described in this paper. The idea is 
that, whatever universe the simulation is talking about, an event either happens or doesn’t happen in that 
particular universe and both of these events do not occur together, even when we may not be sure which 
happens. In a mathematical expression with multiple instances of an uncertain logical quantity, if we do not 
account for this self-dependency (that the event either happens or doesn’t) and instead used naïve interval or 
other bounding methods to evaluate the logical expression, the uncertainty about the logical value would be 
entered into the evaluation multiple times and the uncertainty of the result could be larger than necessary. In 
practice, software will be able, in any case, to detect when such uncertainty inflation is possible, and can 
report a warning to users if appropriate. 
     Beyond a possible inflation of uncertainty, some analysts incorrectly believe that bounding methods are 
not useful in practice because their uncertainties often quickly explode to become vacuous. In order to 
assess whether there is an intrinsic problem with bounding approaches to uncertainty propagation in 
complex problems, we conducted numerical experiments with randomly constructed mathematical 
expressions involving addition, subtraction, multiplication, division, minimum and maximum operations on 
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randomly constructed interval ranges centered between zero and one hundred with widths defined by 
significant digits randomly chosen between one and five. Such intervals vary widely in magnitude and 
width, as illustrated by these examples: 
     [95, 105]    [60.5, 61.5]          [43.9995, 44.0005]        [46.35, 46.45]        [6.35, 6.45]     
     [25, 35]         [18.5, 19.5]          [34.135, 34.145]           [99.15, 99.25]      [54.5, 55.5] 
We measured the relative uncertainty of the outcomes, from many sequences of mathematical operations, as 
the widths of the final intervals divided by their midpoints. We found that most such calculations had 
uncertainties smaller than about 10%, and more than 95% yielded uncertainties smaller than unity. These 
results were typical for mathematical expressions with lengths ranging from 10 to 250 sequential 
operations, and, importantly, do not seem to vary with the number of operations. It is possible for relative 
uncertainties to be very large (perhaps 10 or larger), but these seems to be rather rare in random 
simulations. And when the output uncertainties are very large, it is fair to say that the uncertainty is 
authentically large. The outputs are as tight as possible given their respective inputs. Artifactual inflation of 
uncertainty which is not an authentic reflection of the uncertainty in the inputs can only occur in interval 
analysis when there are repeated variables in the mathematical expressions. When we broadened the 
uncertainties of the inputs still further by allowing there to be possibly zero significant digits, then input 
intervals such as [50,150] and [–50,50] were entered into the calculation streams. Even when about 17% of 
the inputs were these very broad intervals, still more than 50% of the resulting uncertainties were less than 
one, and about 80% were less than 5. About 15% of the final results were actually infinite, resulting from a 
division by zero (that was not later erased by subsequent minimum and maximum operations that return the 
result to a finite range). These results also seem to be invariant to the number of sequential operations 
ranging from 10 to 250. These simulations reveal plainly that uncertainty need not, and probably doesn’t, 
grow to become vacuously wide even when there are many broadly uncertainty inputs involved in a 
calculation. This conclusion extends immediately to probability bounds analysis as well because intervals 
give outer bounds on the uncertainties that it would yield. 
 
 
 

10.   Conclusions 
 
There are twin myths in modeling and simulation that prevent our reaping the benefits from broader 
application of uncertainty quantification and analysis. The first myth is that the results of traditional 
calculations are reliable and precise merely because they are expressed with 7 or 14 decimal places. It is 
unlikely that many actually believe this myth, but they behave as though they do. Few modelers construct 
comprehensive uncertainty or sensitivity analyses that might explore the full implications of the limits of 
knowledge about model structure and parameter values. Without such analyses, we cannot really say 
whether or to what extent our model outputs should be trusted. The second myth is that a full and proper 
accounting of the uncertainty inherent in the simulations and models would blow up to a vacuous 
conclusion that says nothing because any signal would be lost in the noise of uncertainty. Many people 
actually seem to believe this pernicious myth although simple simulations described above show it to be as 
misguided as the first myth. 
     We have developed alpha-version software implementing the features described above in the R 
programming language (R Core Team 2015). Preliminary applications on hypothetical model systems 
characterizing population growth patterns in biological species have corroborated several expectations, 
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including the broad discrepancy between Monte Carlo results and the true range of possible outcomes as 
illustrated in Figure 1. We expect to encounter computational challenges from circular calculations (one 
result depends on other results that depend on the first), and repeated variable problems which may arise 
when the interaction rules in our agent-based models become more complex. Special strategies may be 
needed to tackle these computational challenges.  
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Abstract: Dams play a major role in the development and sustenance of communities, economies
and civilizations. Apart from being exposed to a variety of dynamic forces (ambient and induced),
many dams today have been in operation beyond their design life cycle and thus uncertainty and
deterioration in the material properties would be expected. In order to reduce the risk of failure of
these structure, a strict and frequent monitoring of the structure is required. However as a result
of the physical scale of most dams, this is cumbersome and in many cases expensive. In an attempt
to gain insight into the physical properties (such as stiffness and density distribution, permeability,
etc) which are crucial to the effective operation of these dams an inverse analysis is carried out
on the coupled hydro-mechanical finite element model. The parameter identification is done using
experimental data obtained from recorded responses resulting from induced vibrations on the dams’
crest. As with most engineering problems, we are faced with an ill-posed problem. Thus we intend
to propose an efficient algorithm for the inverse problem and also ascertain the quality of the
calculated parameters by making a comparison between the simulated and recorded dam response.

Keywords: inverse problem, optimization, structural health monitoring

1. Introduction

Dams are structures used to retain or control the flow of water in a catchment area, this could be
for agricultural purposes (irrigation), flood prevention or for electricity generation. Although the
demand for such structures are on the increase to cater for the increasing population and demand
for renewable energy, building new dams requires lots of time and money, thus the efficiency and
operating capacities of existing dams should be maximized.

Today most dams have been in operation far beyond their designed operation period and as
such a decrease in the reliability of such structures is expected. As much as these structures are of
great value to communities, a failure in such a structure is in most cases catastrophic, thus great
care must be taken in its design, operation and maintenance. In order to assess both the structural
integrity and reliability of these structures routine inspections are required. However as a result of
the physical sizes and the increasing heterogeneity in the material properties of these structures it
is often very difficult and tedious to carry out both a qualitative and quantitative assessment of
the dams.

c© 2016 by authors. Printed in Germany.
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A number of literature proposing models based on a variety of formulation for the analysis of
various phenomena during the design and operation of a dam exist. These includes (Lahmer, 2010),
(Lahmer et al., 2011), and (Khoei et al., 2014).
Furthermore, in order to ascertain the structural integrity and monitor the performance of these
very important structures irrespective of when it was constructed, it is necessary to obtain reliable
values of certain parameters which are crucial to the safe operation of these dams. These parameters
provide vital information such as material heterogeneity, saturation distribution, crack or void
location, stiffness degradation etc. The identification of the parameters is made possible by the
inverse analysis of a validated numerical model that adequately describes the dams’ behavior during
its life cycle.

2. Mathematical Formulation

The finite element methods are employed in the calculations of the displacements, pore pressures,
stresses and strains induced on the dynamically excited dam. The mechanical system involves the
solution of the second order differential equation, derived from Newtons’ equation of motion. Where
the time varying excitation force is {ft}, the mass, damping and stiffness are denoted by [M ], [C]
and [K], the displacement, velocity and accelerations are also denoted by {u}, {u̇} and {ü} in
Eq. (1). The mass matrix is formulated for each element as obtained in Eq. (2), the stiffness in
Eq. (3) and the resulting damping matrix is obtained in Eq. (4).

[M ] {ü}+ [C] {u̇}+ [K] {u} =
{
f(t)

}
(1)

me =

∫
Ω
N eT ρeN edΩ (2)

ke =

∫
Ω
BeTDeBedΩ (3)

where:
N e is the element shape function
ρe is the density of the element
B is a matrix containing the derivatives of the shape function
D is a stress/strain matrix which is a function of the materials Youngs’ modulus, E and Poisson’s
ratio, ν

[C] = α [M ] + β [K] (4)

The α and β coefficients in Eq. (4) are the Rayleigh damping coefficients. These can be obtained from
experiments or through other methods proposed in literature. The method proposed by (Chowdhury
and Dasgupta, 2003) was used to calculate α and β.

The Newmark scheme (Chopra, 1995) is applied in solving Eq. (1) such that the values of the
nodal displacements, velocities and accelerations are obtained. Depending on the β∗ and γ∗ values
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used to implement the scheme, it is necessary that the time step δt chosen is less than the critical
time step Tc to ensure stability. The resulting displacements obtained are used to compute the
strains and stresses as done in standard FEM calculations.

In order to get a more realistic idea of the dams’ operation state, it is necessary to consider
the effects and interaction of other phenomena on the structure. In this case the hydraulic effect
of water seepage into the dam material, this induces pore pressures in addition to the mechanical
induced deformation thus generating additional stresses which may impair the safe operation of the
dam. Fluid flow through a porous medium is assumed to be incompressible with constant material
densities along the motion of the fluid through varying pressure points in the domain. Material
permeability is assumed to be isotropic, with displacement, u describing the main variable for the
mechanical process and pore water pressure, pw describing the main variable for the hydraulic
process.

The mathematical modeling of the fluid flow structure interaction involves the momentum con-
servation law and fulfilling the mass balance of liquid law (Lahmer, 2010). This is best understood
from the effective stress law (Eq. (5)) which describes the contribution of the hydraulic effects of
the pore pressures on the normal components of the mechanical stresses. When considering that
negative stresses describes the compression state and positive stress the tension state, the effective
stress is written as in Eq. (5) .

σ′ = σ + αmpw (5)

where:

- σ′ is the effective stress tensor [N/m2]

- pw is the water pore pressure vector [N/m2]

- α is the Biot’s constant (usually α = 1)

- m is specified unit tensor (m = [1, 1, 1, 0, 0, 0]T )

The total discrete equation for the fluid-structure medium can be expressed in 10.

[M ] {ü}+ [C] {u̇}+
∫

Ω[B]TσdΩ =
{
f(t)

}
(6)∫

Ω[B]TσdΩ =
∫

Ω[B]Tσ′dΩ +
∫

Ω[B]TαmpwdΩ (7)

[K] {u} ≈
∫

Ω[B]Tσ′dΩ (8)

[Q]{p} ≈
∫

Ω[B]TαmpwdΩ (9)

[M ] {ü}+ [C] {u̇}+ [K] {u} − [Q]{p} =
{
f(t)

}
(10)

Whereas from the mass fluid balance the seepage equation of fluid through the solid structure
is given in Eq. (11).

[Q]T {u̇}+ [S]{ṗ}+ [H]{p} = {q} (11)
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The linear version of the equations in Eq. (10) and Eq. (11) for the dynamic coupled hydro-
mechanical problem is given in Eq. (12).[

M 0
0 0

]{
ü
p̈

}
+

[
C 0
QT S

]{
u̇
ṗ

}
+

[
K −Q
0 H

]{
u
p

}
=

{
f
q

}
(12)

The coupling, permeability and compressibility matrices Q, S and H are defined in Eq. (13 - 15)
whereas the mass, damping and stiffness matrices M , C and K have been defined in Eq. (1).

Qe =

∫
Ωe

BTαmNp dΩ (13)

He =

∫
Ωe

(∇Np)
T κ ∇Np dΩ (14)

Se =

∫
Ωe

NT
p

(
α− n
Ks

+
n

Kw

)
Np dΩ (15)

3. Forward Modeling

In order to identify the material properties, it is necessary to have a running forward model that
simulates the observed phenomena. In this case the formulations in section 2 and Eq. (12) are
implemented for a hypothetical dam using the material properties in Table I and II.

Table I. Mechanical dam properties.

Height Breadth Length Y oungs′ modulus Poissons′ratio Density Rayleigh coeff. Newmark −β
H [m] B [m] L [m] E [MPa] ν ρ [kg/m3] α β β∗ γ∗

28 19 0.1 2.4 × 103 0.15 24 × 102 −0.354 0.0162 0.5 0.25

For this analysis, a dynamic force is induced on the upstream part of the dam crest and the
response is recorded at an observation point as shown in Figure 1. The basic properties of the
dynamic force can also be seen in Figure 2. The total excitation time is 4 [s] during which peak
amplitudes are reached and then the excitation is stopped, a time-step of 0.1 [s] is used for the

Table II. Hydraulic dam properties.

Water density F luid bulk modulus Porosity V iscosity Permeability F luid flux

ρw [kg/m3] Kf [N/m2] n µ [N/s2] κ [m2] q [m2/s]

1000 2.2 × 106 1 × 10−6 1 × 10−3 1 × 10−18 1.12 × 10−12
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numerical integration of the mechanical part. For the solution of the hydraulic part of the coupled
equation, a time-step of 1 [s] is used.
Ideally, Eq. (11) is first solved and the resulting pore pressures are updated in Eq. (10), the resultant
displacements due to the coupled hydro-mechanical action are then computed. However, in this case
the effect of mechanical velocity (u̇) on Eq. (11) is not considered.

To further investigate the effect of the hydro-mechanical coupling on the dynamic response of the
dam, a comparison is made in Figure 3 between the frequency response of the mechanical system
and the hydro-mechanical system for both the undamped and damped cases.
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Figure 1. Dam geometry.
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Figure 2. Dynamic load on dam.
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Figure 3. Comparison between coupled and uncoupled frequency response at excitation node.

4. Inverse Modeling

The objective of the inverse analysis is to obtain reliable parameter values by minimizing the
error between experimental data (describing in most cases a phenomena) and numerical results
obtained from a mathematical model developed to simulate (as close as possible) the natural
phenomena. Strategies based on different concepts exist for the calibration and optimization of
models in engineering. These includes the Newton methods, which are part of the gradient methods
with line search strategies used in unconstrained nonlinear optimization that gives very fast results
when the initial guess is close to the minimum. The Nelder–Mead method is another of the direct
search or gradient free strategies for locating the minima of a function. The algorithm was originally
published in 1965 and according to (Singer and Nelder, 2009), it is one of the best known algorithms
for multidimensional unconstrained optimization without derivatives. The Particle swarm optimiza-
tion (PSO) is a population based stochastic optimization technique developed by (Eberhart and
Kennedy, 1995), inspired by social behavior of bird flocking or fish schooling. It is a heuristic based
global optimizer easily applicable to a number of situations.

In this section an attempt is made on identifying the material parameters: Youngs’ modulus
E and Permeability κ of the dam from FE model discussed in previous sections. The material
parameters are identified by minimizing the error between the experimental data and model results
using the Nelder-mead algorithm which can be easily implemented in matlab.
The objective function being minimized (Eq. (16))is the sum of squared error with respect horizontal
acceleration calculated at node 13 which located at about 1/3rd of the dams’ height from the base.

Cf (p, nn) =

n∑
i

(Ü mod
(ti,p,nn) − Ü

exp
(ti)

)2 (16)

where:

- Cf is the cost function to be minimized
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- Ü mod
(ti,p,nn) is the horizontal acceleration calculated at node (in this case 13) by the model

- Ü exp
(ti)

is the horizontal acceleration obtained from the experiment

- p is a vector of M , K and C

- ti is the time step at each point

- n is the total number of data points

After several iterations the values of E and κ were obtained. Although the value of κ is unrealistic,
a good fit is observed between the experimental response and simulated response. Figure 4 shows
the quality of fit obtained after parameter optimization. The calculated values were E = 2.4× 109

and κ = −2.64× 10−17, with the value of E being same as in Table I.
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Figure 4. Comparison between experimental and model response for HM coupling.

The solutions obtained in this section would serve as “synthetic experimental data” for the
inverse analysis to identify the dam material properties. In practice the acquisition of such data
is done via acceleration sensors (Geo-phones) or other types of sensors instrumented on the dam
to record various types of vibrations. This data after undergoing processing is used for the inverse
modeling.

5. Conclusion

The damping effect of water on the dam response considering the hydro-mechanical coupling can
be observed in the frequency response plots for the undamped case in Figure 3(a), this effect is
minimal when structural damping is considered as obtain in Figure 3(b). To reduce computation
cost the acceleration data was used as objective function instead of the frequency response which
required more time. However in situations where data from acceleration sensors are available, these
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data are usually voluminous and may be difficult to fit, thus a frequency based objective function
would be required to give better quality results after minimization.

Furthermore during the optimization, it was observed that no unique value of κ could be obtained
although E = 2.4 × 109 was obtained. This shows that κ is less sensitive as a result of the very
low permeability of concrete. The ill-posed nature of the model is also observed here which would
have been more pronounced if the dam material was more porous. In such cases, a regularization
parameter Γ introduced to the objective function according to (Tikhonov, 1963) would improve the
stability of the results as was obtained in (Alalade et al., 2015).
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Abstract: Observations are inevitably contaminated by measurement uncertainty, which is a predominant 
source of uncertainty in some cases. In reliability analysis, probabilistic models are typically fitted to 
measurements without considering this uncertainty. Hence, this paper intends to explore the effect of this 
simplification on structural reliability and to provide recommendations on its treatment. Statistical and 
interval-based approaches are used to quantify and propagate measurement uncertainty. They are critically 
compared by analyzing ground snow measurements that are often affected by large measurement uncertainty. 
It is propagated through the mechanical model of a generic structure to investigate its effect on reliability. 
Parametric studies facilitate to analyze the effect of key parameters, such as measurement uncertainty,
coefficient of variation of ground snow load, and distribution type. The interval analysis is performed as a 
hybrid interval-probabilistic analysis. Measurements are represented as intervals and probabilistic model is 
then fitted to them. Thus, snow parameters and the reliability index are also interval variables; other random 
variables are described by standard probabilistic distributions. Implementation of the statistical approach is 
based on the frequentist paradigm where the contamination mechanism is expressed in terms of random 
variables. This approach allows decoupling measurement uncertainty from a variable of interest. The results 
indicate that measurement uncertainty may lead to significant (order of magnitude) underestimation of failure 
probability and should be taken into account in reliability analysis. If more information than interval endpoints 
is available, a statistical approach is recommended; otherwise the interval representation should be used. 
Ranges of the key parameters are identified where measurement uncertainty should be considered. For 
practical applications, the lower interval bound and predictive reliability index are recommended as point 
estimates using interval and statistical analysis, respectively. The point estimates should be accompanied by 
uncertainty intervals, which convey valuable information about the credibility of results. Although general 
recommendations are given, treatment of measurement uncertainty should be handled on a case-specific basis. 

Keywords: measurement uncertainty, snow, structural reliability, interval arithmetic, maximum likelihood, 
deconvolution 

1. Introduction 

MOTIVATION

Models accounting for all uncertainties are of a considerable interest in structural reliability since these are 
the bases of design specifications, hence impacting the building and structure stocks of large regions. Snow 
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is particularly important for light-weight structures for which it is typically the governing action. To our 
knowledge, the effect of snow measurement uncertainty on structural reliability has not yet been studied and 
other probabilistic models are treated similarly in civil engineering. For instance, neither the joint European 
research on snow actions (Sanpaolesi et al., 1998) or the JCSS Probabilistic Model Code (JCSS, 2002) 
provides any information on the treatment of measurement uncertainty and its effect. Therefore, the aim of 
this paper is to explore the effect of this simplification on structural reliability and to provide 
recommendations on its treatment. 

Observations are inevitably contaminated by measurement uncertainty (MU) which is a predominant 
source of uncertainty in some cases. Uncertainty is understood here as the lack of knowledge (epistemic) and 
natural variability (aleatory)1 not including known systematic error that are assumed to be adjusted. In 
reliability analysis, probabilistic models are typically fitted to measurements without considering their 
uncertainty. This is the case for snow measurements where often only the snow depth is measured and the 
applied techniques makes the derived loads highly uncertain, for example, the uncertainty range can reach 
50% of the measured depth [based on a personal correspondence with a meteorologist]. The World 
Meteorological Organization conducted a comprehensive comparative study on the then available solid 
precipitation measurement techniques and experimentally confirmed that measurements should be adjusted 
for wetting loss, evaporation loss, and wind induced undercatch (Goodison et al., 1998). They found that the 
snow catch ratio of the four most widely used gauges range from 20% to 70% at 6 m/s wind speed. Even for 
automated systems, measurement error in solid precipitation can vary from 20% to 50% due to undercatch in 
windy conditions (Rasmussen et al., 2011). Although these mainly contribute to systematic error they indicate 
uncertainties in snow measurements as these errors cannot be exactly corrected. For instance coefficient of 
determination (R2) values vary from 0.40 to 0.80 for the fitted wind correction equations at certain sites; these 
are associated with about 10% standard error in catchment ratio. Additional uncertainty may be introduced if 
no site specific auxiliary data, e.g. wind speed measurements, are available (Goodison et al., 1998). These 
issues are not limited to snow measurements but valid for all evidence based models ‒ that is for every model 
‒ although their importance may vary. 

ADOPTED APPROACHES

We assume that measurements are corrected for known systematic errors. Additionally, the following model 
is assumed to describe the connection between observed (Y) and real, true, physical (X) values, that is the 
variable of interest: 

(true, real2) ( , )h X EX Y (observed) (1) 

The h(X, E) function represents the mathematical relationship between the true and observed random 
variables referred hereinafter as reality-observation link. E covers the unknown processes contributing to 
measurement uncertainty. The recommended probabilistic models – typically distributions – in the literature 
are almost exclusively given for the true variable and not for the observed, potentially contaminated one. 
Possible reasons for this are that: 
 The contamination is commonly site- and measuring technique-dependent, thus no general 

recommendations can be given for the distribution of Y.

1 This division is subjective as conditioned on the selected “model universe”.
2 Herein we tacitly assume the existence of some objective reality independent of the observer. 
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 The model type is often selected based on theoretical arguments considering the physical phenomena 
generating X, e.g. normal distribution if X is the result of summation; lognormal if X is the product of 
random variables; extreme value distribution if X is related to extremes. 

 Structural reliability is ultimately dependent on X and not on Y, although we are limited to access only Y. 
The last point is especially important since structures are subjected to actions coming from X and not from 

Y; the latter is affected by our ignorance or inability to make accurate measurements (epistemic uncertainty). 
In a broader sense this also applies for X, but for now we remain in the commonly accepted model universe 
of engineering and treat X as a random variable. If the distribution type of X is known or agreed, then the 
reality-observation link uniquely determines the distribution of Y. Hence, if any measurement uncertainty is 
present, its distribution type almost certainly differs from the distribution of X. This is prevalently neglected 
while fitting distributions in civil engineering – Y is assumed to be distributed as X. This simplification is 
acceptable in some practical cases. This method is termed hereinafter as Approach 1 while it is referred to as 
Approach 2 when the difference between distributions is appreciated: 
Approach 1 Use the probabilistic model of true random variable (X) and treat the observations – 
contaminated by measurement uncertainty – (y) as the realizations of this model: y ~ X. 
Approach 2 Differentiate between the distribution of true and observed random variables. Within this, the 
following two sub-approaches are considered: 

Approach 2a Representation of measurement uncertainty with intervals at the level of observations and 
propagating them to the derived parameters via interval analysis. As interval representation by nature 
contains no information about the reality-observation link, the decontamination of observations is not 
possible. 
Approach 2b Representation of measurement uncertainty with a probability distribution. Use a 
mathematical model (h(X, E)) to describe the connection between measurement uncertainty (E), true 
phenomenon (X), and observed phenomenon (Y). Based on this model and on observations (y), infer the 
parameters of the true random variable (X). These issues are referred to as measurement error problems 
in the literature (Kondlo, 2010). 

Additional assumptions for all considered approaches: 
 y = {y1, y2,...yn} and x = {x1, x2,...xn} each are independent, identically distributed realizations; y is 

contaminated by measurement uncertainty. 
 The realizations of the true phenomenon (x) and the measurement uncertainty () are mutually 

independent; 
 The true phenomenon (X) follows arbitrary, but known distribution type; 
 Only for Approach 2b: the measurement uncertainty (E) follows arbitrary, but known distribution type, 

and the reality-observation link is also known. 
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Figure 1. Interval representation of measurement uncertainty (black) on a sorted random sample (red). The sample is generated 
from Q1 with properties given in Table 1 and CoVQ1 = 0.2. 

2. Uncertainty Representation and Propagation 

INTERVAL ANALYSIS

Interval representation is one possible approach to quantify uncertainty in an observed variable: the width of 
the interval expresses our uncertainty (Figure 1). In this concept the true value is certainly within the interval 
but we know nothing about how likely it takes a particular value from that. In other words no probability 
distribution function is assumed over the interval, thus it expresses greater ignorance than probability 
distributions can (Huber, 2010). 

The basic objective of interval analysis is to propagate the interval uncertainty of input variables to the 
outputs. Its main challenge is to calculate the interval bounds without overestimating them. This typically 
occurs if floating point computations are simply replaced by intervals and caused by interval dependency 
(Moore et al., 2009). Since the operators are typically not known explicitly and are non-monotonic, special 
algorithms are needed to obtain sufficiently narrow approximate interval bounds. 

Interval analysis is traditionally used to model floating point truncation error in numerical computations; 
however, it is also successfully applied to various civil engineering issues, for instance, reliability of structures 
(Qiu et al., 2008) and systems (Qiu et al., 2007). Rao et al. (2015) analyzed the effect of incorrect fitting on
trusses and frames using mixed interval finite element formulation, using intervals to model fabrication errors. 
Muhanna et al. (2015) demonstrated the feasibility of non-linear interval finite element analysis for beam-
column structures. In their study geometric, material and load uncertainties are modeled with intervals. 

In this paper the general definition of interval variables is used and constrained numerical optimization is 
applied to find the interval endpoints. This is motivated by the readily available optimization algorithms, and 
its feasibility due to the analyzed simple, computationally cheap examples. For computationally demanding 
models more efficient algorithms are available (Zhang et al., 2010; Alibrandi and Koch, 2015; Muhanna et 
al., 2015). 
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Intervals in this paper are defined by midpoint and radius (r), the midpoint is taken as the observed value, 
yi, see Figure 1. In this approach the true value is assumed to be certainly within the interval given the 
modeling assumptions are valid. 

STATISTICAL ANALYSIS

An alternative approach to represent measurement uncertainty is statistical by means of probability 
distributions. The likelihood function depends on the reality-observation link (Eq.(1)). This connection is also 
uncertain, but for simplicity, known relationship is assumed here and a possible treatment of this uncertainty 
is discussed in Section 4. Algebra of random variables can be used to obtain the likelihood function reflecting 
the distribution of involved random variables and the reality-observation link: 

   ,, | ( , ) | ,X E i i X EfL h x θ x εθ θ θ . (2)

In Approach 1, this means no additional complication because the observations are assumed to be distributed 
as the true random variable since the reality-observation link is neglected. However, in Approach 2b the 
likelihood function should be constructed to remove the effect of measurement uncertainty (E) on the variable 
of interest (X).

The measurement error problem arises in many areas where only the contaminated values are attainable 
to the observer but the interest lays in the inference of true, uncontaminated values. Among others, these areas 
include astronomy, econometrics, biometrics, medical statistics, and image reconstruction (Stefanski, 2000; 
Koen and Kondlo, 2009; Meister, 2009). A straightforward solution is to construct the likelihood function 
(Eq.(2)) and to infer the parameters of the variable of interest (X) by a selected method. To the authors 
knowledge this approach has not been applied in civil engineering yet. 

Maximum likelihood method is used herein to infer the parameters in the statistical formulation of the 
measurement uncertainty problem. This method is a widespread technique that favors parameters at which 
the data are most likely generated by the assumed model. It is a typically asymptotically efficient and 
consistent method (Casella and Berger, 2001). 

Additive and multiplicative reality-observation links are considered. For the additive relationship: Y = X
+ E, the density function of the sum of two independent, continuous random variables is obtained by 
convolution: 

         dY X E X Ef y f f y f y x f x x




      . (3)

The integral can be efficiently solved by utilizing Fourier transformation since afterwards it reduces to a 
point-wise multiplication. Here, the fast-Fourier transformation is used to accomplish this task. For the 
multiplicative relationship: Y = X·E, the density function of the product of two independent, continuous 
random variables is obtained by computing the following integral: 

   
1

dY X E

y
f y f x f x

x x





   
 
 
 

 . (4)

This can be efficiently solved by Mellin transformation but here the integral is directly calculated due to the 
small computational burden. 
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Sampling variability (parameter estimation uncertainty) is accounted for by using the predictive reliability 
index (Der Kiureghian, 1989): 

 
2 2

mean median

1 std 1 1.483 mad
B B

B B

  
  

mean median
     (5) 

Where B is the posterior reliability index, std and mad are the standard deviation and median absolute 
deviation of B, respectively. The formulation with median and mad are used in this paper, as that is more 
robust to outliers. Eq.(5) is an approximation as it is valid only for Normal distributed B. Additionally, the 
statistics are estimated from repeated analyses, and no Bayesian formulation of the reliability problem is used, 
however that was used to derive the formula. For this study it is deemed sufficiently accurate to indicate 
tendencies and to identify critical cases. 

Figure 2. Illustration of probability distribution representation of measurement uncertainty (black) on a sorted random sample (red). 
The sample is generated from Q1 with properties given in Table 1and CVQ1 = 0.2.

3. Example: Reliability of a Generic Structure 

MODEL DESCRIPTION

The reliability of a simple structural member is analyzed using a generic limit state function: 
 50( )g R G Q  X (6)

It represents a structure subjected to permanent (G) and variable (Q50) actions, where the subscript 50 
indicates 50-year reference period (common design working life). The probabilistic model of involved 
random variables are based on the recommendations of JCSS (2001) and summarized in Table 1. For 
simplicity only the variable action is assumed to be affected by measurement uncertainty; it could be easily 
extended to more variables. Coefficient of variations 0.2, 0.4 for Q1 represent annual snow maxima of 
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mountains, highlands, while 0.6 characterizes lowlands in the Carpathian Region. The Lognormal model for 
snow maxima is typically adopted in the USA (ASCE, 2010), while the Gumbel model is widespread in 
Europe (Sanpaolesi et al., 1998; JCSS, 2001). The Normal and Gumbel distributions are light-tailed while 
the Lognormal is heavy-tailed. The adopted distributions and parameter ranges cover also other variable 
actions such as wind and thermal actions, thus the results can be readily generalized. 

Table 1: Probabilistic models. 

Variable name (symbol) Distribution Mean
Coefficient of variation 

(CV)

Resistance (R) Lognormal * 0.10

Permanent action (G) Normal 8 0.10

Variable action (Q1)† Normal, Lognormal, Gumbel 10 [0.20, 0.40, 0.60]
* set to reach t = 3.8 for each combination of inputs.
† the specified parameters are used to generate 50-element sample and the parameters of the model used in 

reliability analysis are inferred from it.

The annual maxima are assumed to be independent: 
   

50

50 1F q F q (7) 

where F(.) is the cumulative distribution function. 

INTERVAL AND RELIABILITY ANALYSIS

To model the effect of measurement uncertainty, 50 random observations are generated from Q1, these are 
treated as observed (Y) values as the reality-observation link by definition is unknown in interval 
representation (Figure 3). Then intervals are centered at observations and various interval radiuses are 
considered. Using these interval variables, the distribution of Q1 is fitted by the method of moments that is a 
widely used approach in civil engineering (Sanpaolesi et al., 1998) and was proved to be robust e.g. for 
modeling hydrological extremes (Madsen et al., 1997). The hybrid interval-probabilistic reliability problem 
is solved using optimization and first order reliability method (FORM). An outcome of the analysis is an 
interval reliability index. 

Figure 3. Algorithm of analyzing the effect of interval measurement uncertainty on reliability.
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The upper bound of it is irrelevant from safety point of view and the lower bound is recommended for 
practical applications (Qiu et al., 2007). This is due to the special nature of intervals and how they represent 
uncertainty: the real value can be anything within the interval but one cannot assume that all points are equally 
likely (principle of indifference) at least because the consequence of specific values are not equal. Hence we 
chose the recommended, careful engineering approach and use the lower endpoint of the reliability index 
interval as representative value. 
 
3.2.1. Full and approximate propagation of interval uncertainty 
As measurement uncertainty is expressed at the level of individual observations its full propagation yields to 
two distinct 50-dimensional constrained optimization problems that can be computationally demanding if 
each iteration step involves fitting a distribution function and solving a reliability problem. The computational 
burden can be considerably lessened by a two-step approximate technique where first the distribution 
parameters are fitted to the interval observations. Then only the interval representation of distribution 
parameters are used in further reliability analysis. Thus, the optimization with reliability analysis is reduced 
to a two-dimensional search space. Moreover, our experience show that the optimum is at the bounds so as it 
can be found by considering only the possible permutations of the parameter bounds. 

The accuracy of full and two-step approximate uncertainty propagations are compared using Gumbel 
distributed Q1. The results in terms of reliability indices are presented in Figure 4. The interval uncertainty is 
expressed as the ratio of interval radius and mean of annual maxima (Q1). 0-10% range is covered and it is 
assumed that all observations are contaminated by the same radius. For each coefficient of variation the mean 
of the resistance is set to reach the 3.8 target reliability level. This is performed by considering no 
measurement uncertainty (r = 0) and using the parameters given in Table 1, thus sampling variability has no 
effect. The calculated upper and lower reliability index endpoints are presented in the plots with solid and 
dashed lines for two-step and full propagations, respectively. Figure 3 shows also the reliability index 
obtained by Approach 1. This is illustrated with a dotted line and is not affected by the assumed measurement 
uncertainty interval. 

 

 
Figure 4. Reliability index intervals as the function of normalized measurement uncertainty radius (r) with full and approximate 
propagation of interval uncertainty. 

 
The plots show that the approximate technique slightly overestimates the accurate (full) reliability 

intervals, the largest difference is observed for CVQ1 = 0.2 with large measurement uncertainty. Since in 
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general the overestimation of the approximate technique is small, it is used in all further analysis. The 
sensitivity factor of the 50-year reference period maxima (Q50) is also displayed on the plots. It corresponds 
to a model without uncertainty in measurement and parameters. The decreasing interval range of  with 
increasing CVQ1 is explained by the decreasing contribution of interval uncertainty to the full uncertainty of 
Q1, i.e. the aleatory uncertainty becomes dominating. Figure 5 illustrates this shrinkage of uncertainty interval 
by comparing the transformed cumulative distribution functions with different coefficient of variations. The 
plots correspond to 50 particular random realizations; the same pattern is observed for other sets of random 
realizations. 
 

 
Figure 5. Illustration of the shrinkage of uncertainty interval with increasing coefficient of variation but constant measurement 
uncertainty interval. 

 
3.2.2. Effect on reliability index and required resistance 
Equation (3) is solved for Normal, Lognormal and Gumbel distributed variable action (Q1) using the two-step 
approximation technique. The results are summarized in Figure 6; they have the same rationale as is given 
for Figure 4. The light gray lines show the opening reliability interval with increasing measurement 
uncertainty for 20 random samples, each with 50 realizations. These are indicative of the effect of sampling 
variability: in this case this is entirely parameter estimation uncertainty due to the finite sample size. The 
results show that sampling variability – with 50 realizations that is typical for maxima model of climatic 
actions – has significant effect on reliability. It is dominating over measurement uncertainty for small interval 
radiuses and comparable for larger values. The thick black lines are the median of the 20 sample sets. The 
reliability index without considering measurement uncertainty can be seen at the common starting point of 
the lower and upper bound lines. The difference of this value and the lower bound is of interest here as it 
indicates the extent of the non-conservative neglect of measurement uncertainty. The difference is deemed 
significant if it is larger than 0.5, this level is indicated by a dashed horizontal line while the significant range 
with a red half line. With the selected target reliability level, this corresponds to more than six-fold increase 
in failure probability. 
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Figure 6. Reliability index intervals as the function of the normalized measurement uncertainty radius (r/Q1). The gray lines 
represent 20 random samples, indicating sampling variability. The black lines are the median lower and upper interval endpoints of 
the reliability index. The red half line indicates the range where the lower endpoint of the reliability interval is significantly lower 
(0.5) than the reliability calculated without measurement uncertainty (r = 0). 

 
The results suggest that moderate ±4% measurement uncertainty can lead to significant reduction of 

reliability level for mountains and highlands represented by CVQ1 = 0.2-0.4. For the largest considered value 
of CVQ1 = 0.6, the Gumbel model does not reach the limiting value. This indicates that for lowlands even a 
quite large ±10% measurement uncertainty has no practically significant effect. The reliability interval ranges 
indicate that even a small ±2% measurement uncertainty can lead to an order of magnitude uncertainty in the 
failure probability, e.g. Lognormal distribution with CVQ1 = 0.2. For larger measurement uncertainties, the 
width of the reliability intervals can be larger than 2.0; the widths are quite considerable for large CVQ1 = 0.6 
models too. 

Measurement uncertainty thus seems to have a marked effect on structural reliability. The practical 
question then arises: what are its implications on design and how it should be accounted? To examine this, 
we calculated the mean resistance required to reach the target reliability with the lower bound of the reliability 
interval (Approach 2a). Then this value is compared to the mean resistance required to reach the target 
reliability without explicit consideration of measurement uncertainty (Approach 1). The ratios of the mean 
values (with interval MU/without explicit MU) are illustrated in Figure 7. These indicate how large 
adjustment might be needed in representative resistance values to meet target reliability in the presence of 
measurement uncertainty. The plots are structured and have the same rationale as Figure 6. The ratio is 
deemed practically significant if it is larger than 1.1. This level is indicated by a dashed horizontal line while 
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the significant range with a red half line. The small effect of sampling variability for Normal distribution is
likely due to the small sensitivity factor of Q50. On the contrary, sampling variability is quite considerable for 
Lognormal distribution. The selected threshold is reached for all the distributions. The Lognormal model 
shows opposite trend; this might be attributed to its heavy tail. For this distribution the 1.1 threshold is reached 
at about 4% radius and the ratio can be over 1.4 for larger radiuses that is a huge potential adjustment. The 
Gumbel distribution illustrates decreasing ratio with increasing coefficient of variation. For CVQ1 = 0.2 
(mountains), moderate ±4% measurement uncertainty can lead to significant mean resistance ratio. For the 
lowlands (CVQ1 = 0.6), the ratio is over the selected threshold only for excessive measurement uncertainty 
±9% which suggests that measurement uncertainty can be neglected for large values of CVQ1. 

Figure 7. Mean resistance ratio for the variable action with and without measurement uncertainty as the function of the normalized 
measurement uncertainty radius (r/Q1). The red half line indicates the significant range where the ratio is larger than 1.1.

STATISTICAL AND RELIABILITY ANALYSIS 

This section presents the statistical approach to quantify and propagate measurement uncertainty 
(Approach 2b). To model the effect of measurement uncertainty, 50 random observations are generated from 
Q1 and treated as true (X) values. Then by using the assumed reality-observation link, it is contaminated by 
measurement uncertainty. This is generated from a known, independent distribution (E). The algorithm is 
outlined in Figure 8. Additive and multiplicative reality-observation links are assumed and the measurement 
uncertainty is taken as normally distributed with zero mean (unbiased). After the contamination of data, the 
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information about the parameters of the underlying generating models – with the exception of the zero mean 
of measurement uncertainty – is disregarded and the maximum likelihood method is applied to decouple true 
values from measurement uncertainty. Finally, the model of decontaminated observations is used in reliability 
analysis. The sampling variability is again indicated by 20 samples and taken into account in an approximate 
manner through the predictive reliability index (Eq.(5)). The median and mean absolute deviation are 
calculated. 

Figure 8. Algorithm of analyzing the effect of measurement uncertainty on reliability using statistical technique.

3.3.1. Decontamination of observations 
To illustrate the technique and the effect of decontamination, random realizations are generated from Gumbel 
distribution – with parameters given in Table 1 – and contaminated by measurement uncertainty (Figure 8). 
First, additive reality-observation relationship is assumed and Approach 1 and Approach 2b are used to infer 
the model parameters. The maximum likelihood method is used to obtain point estimates and the delta method 
is applied to construct 90% confidence intervals to illustrate parameter estimation uncertainty (Coles, 2001). 
The results for three cases of Gumbel distribution and two cases of measurement uncertainty with varying 
standard deviation are discussed only. The realizations and the fitted models are shown in Figure 9. It 
comprises return value–return period plots transformed to Gumbel space where the Gumbel distribution 
appears as a straight line. Though the plots are corresponding to a particular set of realizations, they convey 
reliably the trends and expected differences: (i) Approach 1 typically overestimates the fractiles thus leading 
to lower reliability level and being conservative; (ii) the difference between models increases with increasing 
return period. Due to the small sample size, the difference is affected by large sampling variability. 

The calculations are repeated with multiplicative measurement uncertainty (Figure 10). The results 
correspond well with those obtained for the additive format; wider confidence intervals of Approach 2b 
compared with Approach 1 are observed. This is due to the larger model space where the same sample size 
allows less certain inference. This effect is less pronounced for the additive model. 

For both models, Approach 1 is inherently biased since it is not using the correct likelihood function, while 
Approach 2b asymptotically converges to the true model. Thus, in the long run – from theoretical point of 
view – Approach 2b is better, however Approach 1 seems to be generally conservative for the considered 
reality-observation links. This latter aspect is analyzed in more detail in the following section focusing on 
reliability index as a quantity of practical interest. 
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Figure 9. Gumbel distributions fitted to random realizations contaminated by additive measurement uncertainty using Approach 1 
and Approach 2b. The point estimates (dashed lines) are accompanied by 90% confidence intervals (dotted lines). 
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Figure 10. Gumbel distributions fitted to random realizations contaminated by multiplicative measurement uncertainty using 
Approach 1 and Approach 2b. The point estimates (dashed lines) are accompanied by 90% confidence intervals (dotted lines). 

 
3.3.2. Effect on reliability index 
The effect of measurement uncertainty on reliability index is analyzed for the additive relationship 
considering Normal, Lognormal and Gumbel distributed true values and with coefficient of variation ranging 
from 0.2 to 0.6. The measurement uncertainty has normal distribution with known zero mean and varying 
standard deviation. Consistently with the interval analysis in Section 3.2, the mean value of the resistance is 
determined to reach the target reliability without measurement uncertainty and parameter estimation 
uncertainty. Then the algorithm presented in Figure 8 is applied to generate contaminated observations, to 
decontaminate them, and to calculate the reliability index using the inferred parameters. The calculations are 
repeated for 20 samples with sample size of 50. The results in terms of reliability indices are shown in Figure 
11 and in Figure 12. Grey and light blue solid lines are representing the 20 samples, and the corresponding 

104



Propagating Snow Measurement Uncertainty to Structural Reliability by Statistical and Interval-based Approaches 
 

REC 2016 - A. Rózsás and M. Sýkora 

thick solid and dashed lines are the median and predictive reliability indices, respectively. The difference 
between these latter two lines expresses the effect of parameter estimation uncertainty. For Normal 
distribution, this effect is small compared to Lognormal and Gumbel for which it is increasing with increasing 
standard deviation of measurement uncertainty. For Approach 2b it is typically larger than Approach 1 as the 
larger model space allows less certain inference with the same sample size. In case of Lognormal and Gumbel 
models, the ratio of the predictive and median failure probabilities can be as large as an order of magnitude 
or larger. Additionally, the plots show that the reliability index can considerably be overestimated when 
parameter estimation uncertainty is neglected. The salient large scatter of Approach 2b might be partially 
attributed to the unstable maximum likelihood estimators for small samples (Hosking et al., 1985; Martins 
and Stedinger, 2000). 
 

 
Figure 11. Reliability indices as the function of the normalized standard deviation of measurement uncertainty (E/Q1). The thick 
solid lines are the median of the reliability indices while the thick dashed lines are the approximate predictive reliability indices. 
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Figure 12. Reliability indices as the function of the normalized standard deviation of measurement uncertainty (E/Q1). The thick 
solid lines are the median of the reliability indices while the thick dashed lines are the approximate predictive reliability indices. 

 
Comparing Approach 1 with Approach 2b for Normal and Gumbel distributions, the former approach 

yields to systematically lower reliability indices. The opposite trend observed for Lognormal distribution 
might be attributed to its heavy-tail. For Normal distribution, Approach 1 seems to be overly conservative, 
the median is well below the target reliability level.  

For all distributions, Approach 1 is reasonably conservative with the exception of Lognormal distribution 
and coefficient of variation of 0.6. However, even in this case the predictive reliability index corrects the 
overestimation. Though for Normal distribution it is too conservative, the currently prevalent Approach 1 
appears to be safely applicable to measurement uncertainty problems in case of additive reality-observation 
relationship. Approach 2b is sound from theoretical point of view, however its median overestimates 
reliability level, thus the predictive reliability index is to be used to avoid underestimation of failure 
probability. Its larger parameter estimation uncertainty can lead large reduction in reliability index for small 
sample sizes. 
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4. Discussion 
 
One can distinguish two components of measurement uncertainty: the reality-observation link and the nature 
of the contamination E. The three approaches considered here differ in how they treat these two components. 
The present prevalent approach (Approach 1) neglects both components, thus entirely ignores the possibility 
that the real values are greater or smaller than the observed due to measurement uncertainty. 

The interval approach (Approach 2a) expresses full ignorance in respect of reality-observation link and 
represents measurement uncertainty with intervals. Therefore, no decoupling of true values from 
measurement uncertainty is possible. Intervals should be used with caution because by definition values 
outside of the interval are impossible. This is an assumption that is rarely met in civil engineering. 
Measurement uncertainty is often described on the basis of expert judgment and wide intervals are applied to 
almost surely capture real, unobserved values. 

The statistical approach (Approach 2b) requires the knowledge of the reality-observation link and 
represents measurement uncertainty with distribution function. This is the only approach that can 
decontaminate the observations and can directly infer the variable of interest, true variable. This is important 
since structural reliability is dependent on the true variable. The statistical and interval analysis based 
approaches are conceptually different, thus they are only comparable on that level but not quantitatively. 
Their uncertainty representation is inherently distinct, thus there is no equivalency between interval and 
distribution based representations. 

Additionally, it must be emphasized that another type of uncertainty – statistical uncertainty in parameter 
estimation and selection of distribution function – often needs to be taken into account in reliability analysis 
as it may be even more important as measurement uncertainty investigated here (Rózsás and Sýkora, 2015a; 
2015b). Bayesian paradigm is a natural choice to incorporate this uncertainty, consequently that is 
recommended for practical applications. For example, in real-life situations, the reality-observation link 
cannot be established with certainty. Yet, this uncertainty can be captured by using multiple models and 
averaging them with respect their goodness of describing the data, this can be achieved for example by 
Bayesian model averaging (Hoeting et al., 1999). 

Although this study is limited by the considered distribution types, reality-observation functions, and 
parameter range, it is believed to cover many practically relevant random variables. The presented approach 
and algorithms can be easily used for other distribution types and measurement error structure. An additional 
limitation of this study is that measurement uncertainty is considered only for the dominant variable action. 
However, it is anticipated that for other random variables the effect is smaller due to their typically smaller 
sensitivity factor. Moreover, measurement uncertainty is much smaller for other than climatic actions such as 
resistance and permanent actions. Furthermore, the effect of sample size should be analyzed in later works. 
It is believed that the outcomes would be similar for sample sizes ranging from 20 to couple of hundreds, 
which cover the majority of cases in civil engineering. More data would allow more certain model 
identification. 
 
 
 

5. Conclusions 
 
The current practice in probabilistic engineering treats observed data contaminated by measurement 
uncertainty as realizations of the true distribution, thus neglecting the contamination mechanism. Statistical 
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and interval-based analyses are thus conducted to investigate the effect of this simplification on structural 
reliability. Extensive parametric analyses – based on 50 realizations, which is a typical length of records for 
climatic actions – reveal that: 
If interval representation of measurement uncertainty is used: 
 Sampling variability (parameter estimation uncertainty) has significant effect on reliability: it is dominant 

over measurement uncertainty for small interval radiuses and comparable for large radiuses. 
 For mountains and highlands, moderate ±4% measurement uncertainty – relative to value of an observed 

variable – can lead to significant reduction of reliability level. For lowlands, even a large ±10% 
measurement uncertainty has no significant effect. An effect is deemed significant if it yields to greater 
than six fold increase in failure probability compared with Approach 1 (neglect of measurement 
uncertainty. 

 Reliability interval ranges indicate that a small ±2% measurement uncertainty can lead to reduction of 
0.6 in reliability index. For larger measurement uncertainties, the width of the reliability intervals can be 
larger than 2.0. 

 The effect of measurement uncertainty is more pronounced for low variability random variables where 
its contribution to the total uncertainty increases. 

 Parameter ranges where Approach 1 often overestimates the reliability index are identified.  
If statistical (distribution function) representation of measurement uncertainty is used: 
 It is demonstrated that the statistical approach can be used to decontaminate the observations, thus to 

access the variable of interest. 
 The ratio of the predictive and median failure probabilities can be as large as an order of magnitude or 

larger (~30 for Lognormal distribution). 
 If parameter estimation uncertainty is disregarded, the reliability index can be considerably 

overestimated. 
 For all distributions with additive measurement uncertainty, Approach 1 is reasonably conservative in 

most cases. 
 
Practical recommendations: 
 Figure 6 and Figure 7 can be used to identify cases when Approach 1 significantly overestimates 

reliability index. In such cases and when no or very limited information on measurement uncertainty is 
available, then interval analysis could be used, considering the lower bound of the reliability interval. 

 If the reality-observation link is known then the statistical approach is recommended. For small and 
moderate sample sizes (<100), the predictive reliability index is recommended. For additive measurement 
uncertainty, Approach 1 is conservative. 

 Point estimates such as median reliability index should be accompanied by uncertainty intervals to 
indicate the credibility of results. 

 For ground snow extremes at lowlands, Approach 1 provides a reasonable approximation, thus the effect 
of measurement uncertainty can be neglected. Otherwise more advanced analysis is recommended. 

 
Assessment of measurement uncertainty should be region and case-specific accounting for measuring 

techniques, and applied correction equations, thus involvement of meteorologists, analysts or other experts is 
beneficial. Moreover, the selected approach to propagate measurement uncertainty should always be based 
on the particular issue in question, acknowledging “the degree of precision to which the nature of the subject 
admits”. 
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Abstract: This paper focuses on the analysis of thin plates with uncertain structural parameters modelled as 
intervals. The plate is assumed to be orthotropic. Interval uncertainty is associated with the Young’s modulus 
of the plate and also with the applied load. Interval Finite Element Method (IFEM) developed in the earlier 
work for line elements of the authors for truss and frame structures (Rama Rao et al., 2011) is applied to the 
case of thin plates in the present work. This method is capable of obtaining bounds for interval forces and 
moments with the same level of sharpness as displacements and rotations. Example problems pertaining to 
various edge conditions of the thin plate are solved to demonstrate that the present method is capable of 
obtaining sharp bounds. Results are compared to the values of displacements and forces obtained using 
combinatorial and Monte Carlo solutions. 
 
Keywords: interval, interval finite elements, uncertainty, thin plates, structural analysis 
 
 
 

1. Introduction 
 
Plates play a major role in several important structures viz. ships, pressure vessels, and other structural 
components. Thus it is important to understand their structural behaviour and possible conditions of failure 
especially under conditions of uncertainty. The structural behaviour of thin plates in bending depends on 
several important factors including load, stiffness characteristics of plate and support conditions. The problem 
of plate bending is one of the oldest in the theory of elasticity and is discussed in several textbooks 
(Timoshenko and Krieger, 1959; Szilard, 2004; Reddy, 2007). Lim et.al. (2007) derived exact analytical 
solutions to bending of rectangular thin plates by employing the Hamiltonian principle with Legendre’s 
transformation. The solution obtained by them for example problems of plates with selected boundary 
conditions shows excellent agreement with the classical solutions. Batista (2010) used the Fourier series to 
compute the analytical solutions of uniformly loaded rectangular thin plates with symmetrical boundary 
conditions.  
 
On the other hand, structural analysis without considering uncertainty in loading or material properties leads 
to an incomplete understanding of the structural performance. Structural analysis using interval variables has 
been used by several researchers to incorporate uncertainty into structural analysis (Koyluoglu, Cakmak and 
Nielson, 1995; Muhanna and Mullen, 1995; Nakagiri and Yoshikawa, 1996; Rao and Sawyer, 1995; Rao and 
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Berke, 1997; Rao and Chen, 1998; Muhanna and Mullen, 2001; Pownuk, 2004; Neumaier and Pownuk, 
2007).  
 
To the authors’ knowledge, applications of interval methods for the analysis of plates with uncertainty of load 
and material properties do not exist anywhere in literature. In view of this, we present an initial investigation 
into the application of interval finite element methods to problems of bending of thin plates. Usually, derived 
quantities in Interval Finite Element Method (IFEM) such as stresses and strains have additional 
overestimation in comparison with primary quantities such as displacements. This issue has plagued 
displacement-based IFEM for quite some time. The recent development of mixed/hybrid IFEM formulation 
by the authors (Rama Rao et al., 2011) is capable of simultaneous calculation of interval strains and 
displacements with the same accuracy.  
 
This work presents the application of interval finite element methods to the analysis of thin plates. Uncertainty 
is considered in both the applied load and Young’s modulus as explained in section 2. Examples are finally 
presented and discussed. In the present study a rectangular plate is analysed different type of edge conditions 
of such as clamped and simply supported edge conditions and the deformations are obtained. 

2. Linear Interval Finite Element Method 
 

Finite element method is one of the most common numerical methods for solving differential and partial 
differential equations with enormous applications in different fields of science and engineering. Interval finite 
element methods have been developed to handle the analysis of systems for which uncertain parameters are 
described as intervals. A variety of solution techniques have been developed for IFEM. A comprehensive 
review of these techniques can be found in (Zhang, 2005; Muhanna et al., 2007; Rama Rao et al., 2011). 
Interval analysis concerns the numerical computations involving interval numbers. All interval quantities will 
be introduced in non-italic boldface font. The four elementary operations of real arithmetic, namely addition 
(+), subtraction (˗), multiplication (×) and division (÷) can be extended to intervals. Operations 

},,,{  over interval numbers x and y are defined by the general rule (Moore, 1966; Moore, 1979; 
Moore et al., 2009; Neumaier, 1990) 
 

 },,,,{)]max(),[min(     for   yxyxyx  (1) 

in which x and y denote generic elements x x and y y. Software and hardware support for interval 
computation are available such as (Sun microsystems, 2002; Knüppel, 1994; INTLAB, 1999). For a real-
valued function ),...,( 1 nxxf , the interval extension of ) (f is obtained by replacing each real variable xi by 
an interval variable xi and each real operation by its corresponding interval arithmetic operation. From the 
fundamental property of inclusion isotonicity (Moore, 1966), the range of the function ),...,( 1 nxxf can be 
rigorously bounded by its interval extension function 
 
 },..,|),..,({),..,( 1111 nnnn xxxxff xxxx   (2) 
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Eq. (2) indicates that ),...,( 1 nf xx contains the range of ),...,( 1 nxxf for all iix x . A natural idea 
to implement interval FEM is to apply the interval extension to the deterministic FE formulation. 
Unfortunately, such a naïve use of interval analysis in FEM yields meaningless and overly wide results 
(Muhanna and Mullen, 2001; Dessombz et al., 2001). The reason is that in interval arithmetic each occurrence 
of an interval variable is treated as a different, independent variable. It is critical to the formulation of the 
interval FEM that one identifies the dependence between the interval variables and prevents the 
overestimation of the interval width of the results. In this paper, an element-by-element (EBE) technique is 
utilized for element assembly (Muhanna and Mullen, 2001; Zhang, 2005). The elements are detached so that 
there are no connections between elements, avoiding element coupling. The Lagrange multiplier method is 
then employed to impose constraints to ensure the compatibility. Then a mixed/hybrid formulation is 
incorporated to simultaneously calculate the interval strains and displacements (Rama Rao, Mullen and 
Muhanna, 2011). This linear formulation results in the interval linear system of equations that has the 
following structure: 
 buD FaABK  )( , (3) 

with interval quantities in D and b  only. The term )( ABK D  represents the interval structural stiffness 
matrix and the a + F b  term, the structural loading. Any interval solver can be used to solve Eq. (3), however, 
the following iterative scheme that is developed by Neumaier and Pownuk (Neumaier and Pownuk, 2007) is 
superior for large uncertainty, defining: 
 1)(:  ABDKC 0  (4) 

where D0 is chosen in a manner that ensures its invertability (often D0 is selected as the midpoint of D), the 
solution u can be written as: 
 dbu )()()( CBCFCa   (5) 

To obtain a solution with tight interval enclosure we define two auxiliary interval quantities, 

 
,)( 0 vDd

uv




D
A

 (6) 

which, given an initial estimate for u, we iterate as follows: 
 

 ,){(,})()(){
1

0
11 kk

cc
kkkk D     ACBACFACa dvDdvdbv 

  (7) 

until the enclosures converge, from which the desired solution u can be obtained in a straightforward manner. 
In this paper the above mentioned iterative enclosure has been used for the solution of the linear interval 

system of Eq. (3). The solution includes displacements, strains, and forces simultaneously with the same high 
level of accuracy. 
 

3. Finite Element Model of the Plate 
 
Thin plates are characterized by a structure that is bounded by upper and lower surface planes that are 
separated by a distance h as shown in Figure 1. The x-y coordinate axes are located on the neutral plane of 
the plate (the "in-plane" directions) and the z-axis is normal to the x-y plane. In the absence of in-plane 
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loading, the neutral plane is at the midpoint through the thickness.  In the present work, it will be assumed 
that  the thickness of plate h is a constant. Consequently, the location of the x-y axes will lie at the mid-surface 
plane (z=0).  
 
In most plate applications, the external loading includes distributed load normal to the plate (z direction), 
concentrated loads normal to the plate, or in-plane tensile, bending or shear loads applied to the edge of the 
plate. Such loading will produce deformations of the plate in the zyx ,, coordinate directions which in general 
can be characterized by displacements ),,( zyxu , ),,( zyxv and ),,( zyxw  in the x, y and z directions, 
respectively. 

 
 
The plate is discretized into rectangular ACM (Adini-Clough-Melosh) plate elements. The ACM element is 
a non-conforming element with 12 degrees of freedom (3 degrees of freedom at each of the four nodes). 
Degrees of freedom at each node (i) are the transverse displacement and normal rotation about each axis,              

iw , 
y
wi

xi



 and

x
wi

yi



 , as illustrated in Figure 2. Note that yi  is a vector in the negative y direction.   

Node "1" is selected at the lower left comer of the plate (x=-a, y=-b) and that the nodes are numbered 1,2,3,4 
in counterclockwise direction around the plate. We assume that the plate dimensions are given by 2a and 2b 
as shown in Figure 1 and that the x-y coordinate system is located at the center of plate.  The 12 degrees of 
freedom are arranged in the vector of generalized nodal displacements d  as: 

                        Tyxyxyxyx
T wwwwd 444333222111                       (8) 

 

Figure 1. Geometry of thin plate. 
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3.1. STIFFNESS MATRIX AND FORCE VECTOR OF THE ACM PLATE ELEMENT 

We assume that ),( yxw is some function over the plate geometry as follows: 
3
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4321),( xyayxayaxyayxaxayaxyaxayaxaayxw         (9) 

  333223221),( xyyxyxyyxxyxyxyxyxw                   (10) 

which is represented as  

                               ),(),( yxNyxw                                                                                                     (11) 
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Substituting the values of x and y coordinates of nodes 1,2,3,4 of the plate in the Eq. 12 will yield: 

                          d                                                                                                                            (13) 

where  and  d are vector of unknown coefficients and vector of generalized nodal displacements for the 
element respectively. Substituting   from Eq. (13) in Eq. (11), we obtain

                                     dyxNyxw 1),(),( 
                                                                                      (14) 
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Figure 2. Rectangular element with 12 degrees of freedom.
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The curvatures of the plate element viz. xx , yy and xy are obtained from the second order partial 
differentiation of ),( yxw w.r.t x and y as follows: 

                2
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Thus the vector of curvatures  )(e for the plate element can be expressed as 
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From the moment-curvature relationship   DM }{ we obtain  
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where  
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Total potential energy stored in the plate due to bending is given by (Gallagher, 1975; Bathe, 1996) 
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Using the first variation of , we obtain, 

              dKddxdyBDBP e
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TTe )(11)( 
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where the stiffness matrix  )(eK  is given as 
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and the nodal force vector for the plate element  )(eP  is given as: 
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Te dxdyyxNpP ),(1)(                                                                            (23) 

 
 

4. Interval Finite Element Model of the Plate 
 
An element-by-element (EBE) technique is utilized for element assembly as outlined in section 2. 

Interval uncertainty is considered in pressure zp  and Young’s modulus of the plate E . Accordingly, the 
stiffness matrix and the force vector of the plate element are rewritten, denoting interval quantities in boldface, 
as follows: 
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For convenience,  1B  is denoted as  1B . Thus Equation (24) can be rewritten as 
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                                                                                                               (26) 

The  D matrix appearing in the above equation is an interval matrix owing to the uncertainty of Young’s 
modulus E . It can be expressed as follows: 
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where E is the interval Young’s modulus and  is the Poisson’s ratio.  
 
Following the work of  Xiao et.al., (Xiao, Fedele and Muhanna, 2013), the  D  matrix is decomposed as 
follows:  
 
        T

kkkk AdiagA )( αΛD                                                                                                                          (28) 
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where Eα k ;
T

k
hhh
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Applying numerical integration to Eq. (26), then 
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that leads to   
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Eq. (31) can be rewritten as 
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So the decomposition for the element stiffness matrix  (e)K  is expressed as 

     Tee AdiagA )()( )( αK (e)                                                                                            (33) 
 

The stiffness matrix of the structure K is obtained from the element stiffness matrices (e)K described in Eq. 
(33) as follows: 
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This can be denoted as  
                                                   TAA DK                                                                                             (35) 
 
When each plate element is subjected to an interval pressure zp , the corresponding interval force vector  P
described in Eq. (23) for the structure can be defined using the M matrix approach outlined by the authors 
(Muhanna and Mullen, 1999) as follows: 
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where n is the number of degrees of freedom for the structure and m is the number of elements. Each column 
of  M matrix contains the contribution of deterministic pressure zp on each plate element and the interval 

vector  δ contains interval multipliers corresponding to pressures acting on each of the m elements of the 
structure. In addition, the vector of point loads acting on the nodes of the structure can be represented                           
as cP . 
 
The current interval formulation is based on the Element-By-Element (EBE) finite element technique 
(Muhanna and Mullen, 2001; Rama Rao, Mullen and Muhanna, 2011). In the EBE method, each element has 
its own set of nodes, but the set of elements is disassembled, so that a node belongs to a single element. A set 
of additional constraints is introduced to force unknowns associated with coincident nodes to have identical 
values. Thus, the constraint equation VCU  takes the form 
 
                                                                    0UC                                                                                   (37) 
 
where the constraint matrix C is a deterministic one (fixed point matrix). Eq. (17) can be rewritten to 
represent the interval form of strain-curvature relationship as 
                                                    dκ(e) 1

 B                                                                                           (38) 
where  d is the vector of nodal displacements for the element. At the global level, this relation can be 
expressed as  
                                                  κUB1                                                                                                  (39) 
where  1B is the strain-curvature matrix and  κ  is the vector of interval curvatures for the structure. Eq. 
(39) can be used as an additional constraint in addition to Eq. (37). Thus the modified potential energy *
can be expressed as      
   

                         )()(
2
1
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                                                (40) 

 
Invoking the stationarity of * , that is 0*  , and considering Eq. (40), we obtain 
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 (41) 

where 1 and 2 are vectors of Lagrange Multipliers. The solution of Eq. (41) will provide the values of 
interval displacements U (primary unknowns) as well as interval values of 1λ , 2λ and  κ  (secondary 
unknowns) with the same level of sharpness (Rama Rao, Mullen and Muhanna ,2011). It is further observed 
from Eq. (41) that the Lagrange multipliers  2λ have zero value.  
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                                                                     (42) 

Eq. (41) is now similar to Eq. (3) and thus can be solved using the Neumaier’s approach outlined in section 
2. The vector of interval moments  M can be obtained from the vector of interval curvatures  κ as  
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The applicability of the procedure outlined above is illustrated by solving numerical examples in the 
next section. 

 
5. Example Problems 

A thin rectangular plate with clamped edges is chosen to illustrate the applicability of the present 
approach to handle uncertainty in load and material properties in case of thin plate problems. These examples 
are chosen to demonstrate the ability of the current approach to obtain sharp bounds to the displacements and 
forces even in the presence of large number of interval variables. The two example problems are solved for 
various levels of interval widths of the loads centered at their nominal values. All interval variables are 
assumed to vary independently. Solution procedure outlined in the previous sections is used to perform the 
linear interval finite element analysis. The material and geometric properties of the plate are given in Table 
1 below.  The discretization scheme adopted is shown in Figure 3.  

 
Table 1.  Properties of rectangular plate and discretization scheme. 

 
Length  Lx 2.0 m 
Width Ly 3.0 m 
Thickness 0.025 m 
Young’s modulus 210 GPa 
Poisson’s ratio  0.3 

Applied Pressure zp  14.0103 Pa 

Number of divisions along x-axis nx  
Number of divisions along y-axis ny  

Notation for discretization scheme nynx  
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First the present interval approach is validated by solving the problem of a rectangular plate with a 4x4 
discretization scheme. Solution is computed using the present interval approach and combinatorial solution. 
The computation of results for combinatorial solution required computation of results for 216=65,536 
combinations.  

The results obtained for clamped plate for vertical displacement at center of the plate (at node 13), slope 
y at node 12 and slope x at node 7  at various levels of uncertainty of Young’s modulus (E) are shown in  

Figure 4 , Figure 5 and Figure 6 respectively. Figure 7 and Figure 8 show the variation of xxM and yyM at 
the center of the plate (at node 13) at various levels of uncertainty of Young’s modulus (E). These figures 
show the lower and upper bounds of the present interval solution and the corresponding results of the 
combinatorial solution for various levels of uncertainty of Young’s modulus from 0 percent to 10 percent.  It 
is observed from these figures that the bounds of the present interval solution sharply enclose the bounds of 
combinatorial solution at all levels of uncertainty.  

Figure 3. Discretization scheme of rectangular plate.
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Figure 5. Clamped plate- variation of at node 12 w.r.t. uncertainty of E.

Figure 4. Clamped plate- variation of vertical displacement of center of plate (at node 13) w.r.t. uncertainty of E.
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Figure 6. Clamped plate- variation of at node 7 w.r.t. uncertainty of E.

Figure 7. Clamped plate- variation of at center of plate (at node 13) w.r.t. uncertainty of E.
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Results are computed for the 44 plate for the following cases: 
A) Load uncertainty of 10 percent (±5 percent variation of load about its mean value) alone is present 
B) 1 percent uncertainty of E(±0.5 percent variation of E about its mean value) alone 
C) Load uncertainty of 10 percent along with 1 percent uncertainty of E. 

Tables 2, 3 and 4 present the results of selected displacements and rotations corresponding to cases A, B and 
C respectively. Similarly, Tables 5, 6 and 7 present the results of moments at the center of the plate 
corresponding to cases A, B and C respectively.   

It is observed from the Tables 2 and 5 that the results of the interval solution coincide with those obtained 
using combinatorial approach and thus provide exact bounds to the combinatorial solution. It is observed 
from Tables 3 and 6 that the interval solution gives sharp bounds to the values of selected displacements and 
rotations w.r.t the corresponding values obtained using combinatorial solution. As already mentioned, these 
solutions required computation of 216 =65536 combinations. Tables 4 and 7 show the results computed for 
10 percent load uncertainty along with 1 percent uncertainty of Young’s modulus E. It is impractical to 
compute combinatorial solution in this case, as it would require computation of solution for 
216216=4,294,967,296 combinations. Instead, the bounds of the solution are computed using MCS (Monte-
Carlo Simulations).  The results computed in Tables 4 and 7 are for 20,000 simulations. It is to be noted here 
that the results obtained using MCS provide inner bounds to the combinatorial solution whereas the results 
obtained using interval solution provide outer bounds to the combinatorial solution. 

Figure 8. Clamped plate- variation of at center of plate (at node 13) w.r.t. uncertainty of E.
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Table 2.  Clamped rectangular plate (44)– selected displacements and rotations of the plate for 10% uncertainty of load (Case-A). 
 

Method w13103(m) 
x 103(radians) at node 7 y 103(radians) at node 12 

 Lower Upper Lower Upper Lower Upper 
Combinatorial -1.90416 -1.72281 -1.10534 -0.96432 2.55516 2.82412 
Interval  -1.90416 -1.72281 -1.10534 -0.96432 2.55516 2.82412 
Error% 0.0 0.0 0.0 0.0 0.0 0.0 

 
Table 3.  Clamped rectangular plate(44)- selected displacements and rotations of the plate for 1% uncertainty of E (Case-B). 
 

Method w13103(m) 
x 103(radians) at node 7 y 103(radians) at node 12 

 Lower Upper Lower Upper Lower Upper 
Combinatorial -1.82260 -1.80446 -1.04167 -1.02805 2.67626 2.70315 
Interval  -1.82302 -1.80395 -1.04455 -1.02510 2.67482 2.70446 
Error% 0.023 0.028 0.276 0.287 0.054 0.048 

 
Table 4. Clamped rectangular plate(44)- selected displacements and rotations of the plate for 10% uncertainty of load and  1% 
uncertainty of E (Case–C). 
 

Method w13103(m) 
x 103(radians) at node 7 y 103(radians) at node 12 

 Lower Upper Lower Upper Lower Upper 
MCS -1.87530 -1.74648 -1.07575 -0.97905 2.59554 2.78867 
Interval  -1.91180 -1.71030 -1.10937 -0.94955 2.54020 2.84412 
Error% 1.946 2.072 3.125 3.013 2.132 1.988 

 

Table 5. Clamped rectangular plate (44)- moments at the center of the plate for 10% uncertainty of load (Case-A). 
 

Method 
xxM (kN) at node 13 yyM 103(kN) at node 13 

 Lower Upper Lower Upper 
Comb -2653.612 -2400.887 -1421.684 -1243.397 
Interval  -2653.612 -2400.887 -1421.684 -1243.397 
Error% 0.0 0.0 0.0 0.0 

 
Table 6. Clamped rectangular plate (44)- moments at the center of the plate for 1% uncertainty of E (Case-B). 
 

Method 
xxM (kN) at node 13 yyM 103(kN) at node 13 

 Lower Upper Lower Upper 
Comb -2546.794 -2507.773 -1343.636 -1321.502 
Interval  -2561.199 -2493.300 -1358.769 -1306.311 
Error% 0.566 0.577 1.126 1.150 
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Table 7. Clamped rectangular plate (44)- moments at the center of the plate for 10% uncertainty of load and                                 1% 
uncertainty of E (Case-C). 

Method
xxM (kN) at node 13 yyM 103(kN) at node 13

Lower Upper Lower Upper
MCS -2612.438 -2425.942 -1383.487 -1259.684
Interval -2678.945 -2358.225 -1434.310 -1211.391
Error% 2.546 2.791 3.674 3.834

Figure 9 presents the variation of the lower and upper bounds of the interval displacement zw along the 
length and width of the plate respectively. Figure 10 presents the variation of the lower and upper bounds of 
the slope x along the width of the plate. Figure 11 presents the variation of the lower and upper bounds of 
the slope y along the length of the plate. 

Figure 9. Clamped plate- variation of vertical displacement along the length of the plate with 10% uncertainty of load 
and 1% uncertainty of E.
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Figure 11. Clamped plate- variation of  along the length of the plate with 10% uncertainty of load and 1% uncertainty of E.

Figure 10. Clamped plate- variation of  along the width of the plate with 10% uncertainty of load and 1% uncertainty of E.
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Tables 8, 9 and 10 present the values of selected displacements and rotations for a discretization scheme 
of 2020 (400 elements) for cases A, B and C respectively. Similarly, Tables 11, 12 and 13 present the values 
of moments at the center of the plate for cases A, B and C respectively. It is to be noted here that the 
computation of combinatorial solution for cases A or B would require 2400 combinations while it would 
require computation of 2800 combinations for case C. Thus it is practically impossible for to compute the 
combinatorial solution. Instead, the results of the bounds obtained using 10000 Monte Carlo simulations are 
presented. It is here to be noted that the bounds of the interval solution enclose the corresponding bounds of 
the combinatorial solution from outside. On the other hand, the bounds of the results computed using Monte 
Carlo solution enclose the corresponding bounds of combinatorial solution from inside. It is to be further 
noted that the percentage error reported in Tables 5 through 13 can be reduced by increasing the number of 
simulations. However it is observed that it is computationally time consuming.  

 
Table 8. Clamped rectangular plate (2020)– displacements at the center of the plate for 10% uncertainty of load (Case-A). 
 

Method 
221w 103(m) x 103(radians) at node 111 y 103(radians) at node 216 

 Lower Upper Lower Upper Lower Upper 
MCS -1.65855 -1.63336 -8.43218 -8.25503 2.42576 2.46399 
Interval  -1.72747 -1.56295 -8.85896 -7.81985 2.32204 2.56667 
Error% 4.155 4.311 5.061 5.272 4.276 4.167 

 
Table 9. Clamped rectangular plate (2020)– displacements  center of the plate for 1% uncertainty of E (Case-B). 
 

Method 
221w 103(m) x 104(radians) at node 111 y 103(radians) at node 216 

 Lower Upper Lower Upper Lower Upper 
MCS -1.64694 -1.64384 -8.35812 -8.32283 2.44201 2.44683 
Interval  -1.65386 -1.63656 -8.42754 -8.25127 2.43025 2.45845 
Error% 0.420 0.443 0.831 0.860 0.482 0.475 

 
Table 10. Clamped rectangular plate (2020)– displacements at the  center of the plate for 10% uncertainty of load and 1% uncertainty 
of E (Case-C). 
 

Method 
221w 103(m) x 103(radians) at node 111 y 103(radians) at node 216 

 Lower Upper Lower Upper Lower Upper 
MCS -1.66052 -1.63068 -8.43013 -8.25141 2.42244 2.46768 
Interval  -1.73665 -1.55377 -8.95341 -7.72540 2.30699 2.58172 
Error% 4.585 4.716 6.207 6.375 4.766 4.621 

 
Table 11. Clamped rectangular plate (2020)– moments  center of the plate for 10% uncertainty of load (Case-A). 
 

Method 
xxM (kN) at node 221 yyM 103(kN) at node 221 

 Lower Upper Lower Upper 
MCS -2096.211 -2057.435 -1154.767 -1124.961 
Interval  -2180.916 -1973.210 -1204.756 -1077.381 
Error% 4.041 4.094 4.329 4.229 

 
 

128



 Interval Finite Element Analysis of Thin Plates 
 

REC 2016 – M. V. Rama Rao, R. L. Muhanna and R. L. Mullen 

Table 12. Clamped rectangular plate (2020)– moments at the center of the plate for 1% uncertainty of E (Case-B). 
 

Method 
xxM (kN) at node 221 yyM 103(kN) at node 221 

 Lower Upper Lower Upper 
MCS -2088.860 -2064.535 -1146.630 -1135.780 
Interval  -2127.365 -2026.761 -1175.676 -1106.461 
Error% 1.843 1.830 2.533 2.581 

 
 

Table 13. Clamped rectangular plate (2020)– moments at the center of the plate for 10% uncertainty of load and                                 1% 
uncertainty of E (Case-C). 

 

Method 
xxM (kN) at node 221 yyM 103(kN) at node 221 

 Lower Upper Lower Upper 
MCS -2108.068 -2051.424 -1161.423 -1121.883 
Interval  -2234.305 -1919.821 -1242.057 -1040.080 
Error% 5.988 6.415 6.943 7.292 

 
 

6. Conclusion 
 
A linear Interval Finite Element Method (IFEM) for structural analysis of thin plates is presented. Uncertainty 
in the applied load and Young’s modulus is represented as interval numbers. Results are also computed using 
combinatorial solution and Monte Carlo simulations as appropriate. Example problems illustrate the 
applicability of the present approach to the problem of predicting the structural behavior of thin plates in the 
presence of uncertainties.  
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Abstract: This paper deals with finite element analysis of linear structures with uncertain parameters 
modeled as interval variables. Uncertainties are handled by means of the improved interval analysis via 
extra unitary interval which enables to keep track of the dependencies between interval variables and thus 
reduce overestimation affecting both the assembly and solution phases of finite element procedures. 
Approximate explicit expressions of the bounds of the interval displacements are derived by applying the 
so-called Interval Rational Series Expansion. The computational efficiency of the method is enhanced by 
performing a preliminary sensitivity analysis to identify the most influential parameters on the selected 
response quantity. Numerical results are presented to demonstrate the accuracy and efficiency of the 
proposed procedure.  
 
Keywords: finite element method, interval uncertainties, improved interval analysis, explicit expressions, 
sensitivity analysis, lower bound and upper bound 
 
 
 

1. Introduction 
 
Propagation of uncertainties affecting the design parameters has attracted the attention of several 
researchers over the last decades (Ayyub and Klir, 2006). Indeed, it is widely recognized that small 
variations of the input parameters may seriously affect the performance of an engineering system. In this 
context, the key issue is the selection of an appropriate mathematical model of uncertainty based on 
available empirical information. As known, the most widely used representation of uncertainties arising in 
engineering problems is the probabilistic one which is based on the concepts of random variable and 
random field characterized by appropriate Probability Density Functions (PDFs). In recent years, alternative 
uncertainty models based on non-probabilistic concepts (Elishakoff and Ohsaki, 2010; Corotis, 2015) have 
gained increasing importance in engineering applications. Such models turn out to be effective tools to 
describe and process uncertainties described by incomplete of fragmentary data, as happens in early design 
stages. Among non-probabilistic approaches, the interval model, originally developed on the basis of the 
interval analysis (Moore, 1996; Moore et al., 2009), has attracted the attention of many researchers mainly 
because of its simplicity and the small amount of required information. This model represents uncertainties 
as interval variables with given lower bound (LB) and upper bound (UB). No information is provided on 
the frequency of occurrence of values between the LB and UB.  

The interval model of uncertainty has been extensively used in the context of finite element structural 
analysis giving rise to the so-called Interval Finite Element Method (IFEM). For a general overview of the 
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state-of-art and recent advances in interval finite element analysis, readers are referred to (Moens and 
Vandepitte, 2005; Moens and Hanss, 2011). The main challenge to be faced in the application of the IFEM 
to real engineering problems is the so-called dependency phenomenon (Moore et al., 2009) which 
introduces conservatism both in the solution and matrix assembly phases. This phenomenon is mainly due 
to the inability of the classical interval analysis (CIA) to keep track of the dependency between interval 
variables. To limit overestimation of the interval solution, several versions of the IFEM have been 
developed, such as the element-by-element technique (Muhanna and Mullen, 2001), the sensitivity analysis 
method (Pownuk, 2004; Kreinovich et al., 2007) or the improvement of interval finite element analysis 
proposed by Degrauwe et al. (2010) based on affine arithmetic. Recently, the so-called improved interval 
analysis via extra unitary interval (IIA via EUI) (Muscolino and Sofi, 2012) has been introduced to perform 
interval structural analysis by taking into account dependencies between interval variables modeling 
uncertain physical properties. This is achieved by associating to each interval variable a particular unitary 
interval, the so-called EUI, which does not follow the rules of the CIA.  

In this paper, a novel IFEM for the static analysis of linear-elastic structures with uncertain parameters 
is presented. Without loss of generality, Young’s moduli of the FEs are modeled as independent interval 
variables, while applied loads are assumed to be deterministic. The key idea of the method is to handle 
interval variables by applying the IIA via EUI (Muscolino and Sofi, 2012) in order to reduce overestimation 
of the interval solution. Accordingly, an EUI is associated to each uncertain parameter and, therefore, to 
each FE. This allows to keep track of the dependencies between interval variables both in the assembly and 
solution phases of the finite element procedure. Then, approximate explicit expressions of the bounds of the 
interval nodal displacements are derived by applying the so-called Interval Rational Series Expansion
(IRSE) (Muscolino and Sofi, 2013), recently proposed to evaluate the explicit inverse of an interval matrix 
with modifications. Finally, attention is focused on the computational efficiency of the presented IFEM. It 
is shown that the computational burden associated to the IRSE can be drastically reduced by retaining just 
the contribution of the most influential uncertain parameters. Such parameters are efficiently identified by 
performing a preliminary sensitivity analysis. 

For validation purpose, a 3D cantilever beam with uncertain Young’s modulus is analyzed. Both the 
accuracy and computational efficiency of the presented IFEM are investigated. 

2. Interval Finite Element Formulation 

2.1. INTERVAL MODEL OF UNCERTAINTY
The interval model of uncertainty describes the generic uncertain parameter as an interval variable (Moore, 
1966) with given lower bound (LB) and upper bound (UB). It turns out to be very useful when only range 
information on the uncertain parameters is available, as happens in early design stages. 

Let  ,I
i i i    be an interval variable where is the set of all real interval numbers; the 

symbols i and i denote the LB and UB of the interval, respectively, while the apex I characterizes the 
interval variables. The i-th real interval variable  ,I

i i i   is such that i i i    and it is 
characterized by the midpoint value (or mean), 0,i , and the deviation amplitude (or radius), i , given by:  

 0, mid ;      
2 2

I i i i i
i i i

   
  

 
    (1a,b)

where  mid  is an operator yielding the midpoint of the interval quantity between curly brackets. 
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In the framework of interval symbolism, a generic interval-valued function f and a generic interval-

valued matrix function A of the interval vector I rαI r , collecting the variables I
i , ( 1,2, )i r( 1,2, )( 1,2, )i r( 1,2, ) , will 

be denoted in equivalent form, respectively, as: 
 

 

( ) ( ), , ;

( ) ( ), , .

I I I

I I I

f f f   

   

α α α α α α

A A α A α α α α α
(2a,b) 

2.2. INTERVAL GLOBAL EQUILIBRIUM EQUATIONS
Let us consider a continuous elastic body which occupies the volume V bounded by the surface S in its 
undeformed state. The body is subjected to volume forces ( )b x in V and surface forces ( )t x on the loaded 
(or free) portion tS of the boundary surface S , with T

1 2 3[ ]x x xx denoting the position vector of a 
generic point referred to a Cartesian coordinate system 1 2 3( , , )O x x x ; the displacements ( )u x( )u x( )u x( ) are imposed 
on the constrained portion uS of S . The constitutive behavior of the material is linear-elastic isotropic. All
input parameters are assumed to be known deterministically, except Young’s modulus of the material which 
is modeled as an uncertain parameter. 

Let the volume V of the body be subdivided into eN finite elements (FEs). Young’s modulus of each 
FE is modeled as an interval variable, i.e.: 

 ( ) ( ) ( )
0( ) 1 ,          ( 1,2, , )i I i I e

i iE E i N    ( )( ) 1 ,          ( 1,2, , )( )( ) 1 ,          ( 1,2, , )( )( )e( )( )( ) 1 ,          ( 1,2, , )( )e( )( ) 1 ,          ( 1,2, , )( )( ) 1 ,          ( 1,2, , )i N( ) 1 ,          ( 1,2, , ) (3)

where [ , ]I
i     is a symmetric interval variable, i.e. characterized by a zero midpoint value 

0, 0,i   which represents the dimensionless fluctuation around the nominal value ( )
0

iE . Following the 
improved interval analysis via extra unitary interval (IIA via EUI) (Muscolino and Sofi, 2012), such 
fluctuation is herein expressed as (see Appendix): 

ˆI I
i i ie   (4)

where ˆ [ 1, 1]I
ie    is the EUI. In order to guarantee always positive values of the uncertain Young’s 

modulus, the deviation amplitude of I
i must satisfy the condition 1i  . Notice that an EUI is 

associated to each uncertain Young’s modulus and, therefore, to each FE. This allows to link physical 
properties to the FEs and limit the overestimation due to the dependency phenomenon which typically 
affects both the assembly and solution phases of IFEMs based on the CIA (Moore et al., 2009). 

Taking into account Eqs. (3) and (4), the elastic matrix of the i -th FE can be expressed as: 
 ( ) ( )

0ˆ( ) 1i I I i
i i ie  E E (5)

where ( )
0
iE is the elastic matrix of the FE with nominal Young’s modulus ( )

0
iE .

Following the standard displacement-based FE formulation, the interval displacement field and the 
associated strain field within the i -th FE can be approximated as follows: 

( ) ( ) ( )( ; ) ( ) ( )i I i i Iu x α N x d α (6)
and 

( ) ( ) ( )( ; ) ( ) ( )i I i i Iε x α B x d α (7)
where  , eNI  α α α eNeNe is the interval vector collecting the dimensionless fluctuations I

i ,
( )( 1,2, , )ei N ( )( 1,2, , )( )( 1,2, , )( )( )e( )( )( 1,2, , )( )e( )( 1,2, , )( )( 1,2, , )i N( 1,2, , ) , of Young’s moduli of the eN FEs; ( ) ( )iN x denotes the shape-function matrix; ( ) ( )iB x is 
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the strain-displacement matrix; ( ) ( )i Id α  is the nodal displacement vector of the i -th FE which depends on 
the interval variables I

i . 
Taking into account Eqs. (5) and (7), the stress field can be expressed by means of the constitutive 

equations as follows:  
 ( ) ( ) ( ) ( ) ( ) ( )

0ˆ( ; ) ( ) ( ; ) 1 ( ) ( ).i I i I i I I i i i I
i i ie   σ x α E ε x α E B x d α  (8) 

Due to Young’s modulus uncertainty, the element stiffness matrix turns out to be an interval matrix, 
defined as: 

 
( )

( ) ( )T ( ) ( ) ( ) ( )
0ˆ( ) ( ) ( ) ( )d 1

i

i I i i I i i I i
i i i i

V

V e     k B x E B x k  (9) 

where ( ) ( )
0 ( )i i

i 


α 0
k k  is the nominal stiffness matrix. 

The element force vector is not affected by uncertainties, i.e.: 

( ) ( )

( ) ( )T ( ) ( )T ( )( ) ( )d ( ) ( )d .
i i

t

i i i i i

V S

V S  f N x b x N x t x  (10) 

It is worth emphasizing that, by applying the IIA via EUI, an EUI is associated to the stiffness matrix of 
each FE (see Eq.(9)). This allows to keep track of the dependencies between interval Young’s moduli of the 
various FEs and thus perform standard assembly. Specifically, the assembly procedure yields the following 
set of linear interval equations governing the equilibrium of the FE model: 

( ) ( )I I K α U α F  (11) 
where ( )IU α  is the interval vector collecting the n  unknown nodal displacements, while 

( )T ( ) ( )

1
( ) ( )

eN
I I i i I i

i
i




 K α K L k L  (12) 

and 
( )T ( )

1

eN
i i

i
F L f  (13) 

are the interval global stiffness matrix of order ( )n n  and the nodal force vector, respectively. Finally, in 
the previous equations, ( )iL  denotes the connectivity matrix.  

Taking into account Eq.(9), the interval global stiffness matrix can be rewritten as sum of the nominal 
value plus an interval deviation, i.e.: 

( )T ( ) ( )
0 0

1

ˆ
eN

I i i i I
i i

i
e



  K K L k L  (14) 

where 0 ( )
α=0

K K α  is the global nominal stiffness matrix 
 

3. Bounds of the Solution 
 
Within the interval framework, the solution of the set of interval equilibrium equations (11) involves the 
evaluation of the LB and UB vectors ( )U α  and ( )U α . To this aim, the knowledge of the explicit inverse of 
the interval stiffness matrix is crucial. Recently, the so-called Interval Rational Series Expansion (IRSE) 
(Muscolino and Sofi, 2013) has been derived as a modified explicit form of the Neumann series for 
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evaluating the approximate inverse of an interval matrix with modifications. In the sequel, first the IRSE is 
summarized, then it is applied to derive approximate explicit bounds of the interval displacements. 

3.1. APPROXIMATE EXPLICIT SOLUTION: INTERVAL RATIONAL SERIES EXPANSION
The first step to apply the IRSE is the decomposition of the interval stiffness matrix as sum of the nominal 
value plus an interval deviation given by a superposition of rank-one matrices, i.e.: 

( ) ( )T
0 0

1 1 1

ˆ( )
e e iN N p

I I I
i i i i i i

i i
e 

  

     K α K K K s v( ) ( )T ( ) ( )T ( ) ( )T  ( ) ( )T
α K K K s v

( ) ( )T α K K K s v ( ) ( )T ( ) ( )T
α K K K s v

( ) ( )T ( ) ( )T

1 11 1 1 1
  (15)

where ( )
is( ) and ( )

iv( ) are column vectors and ip is an integer number. The definition of these quantities 
depends on the kind of decomposition adopted for the matrices iK (see e.g., Impollonia, 2006; Muscolino 
and Sofi, 2013; Muscolino et al., 2014).

By applying the IRSE truncated to first-order terms, the inverse of the interval stiffness matrix can be
expressed in approximate explicit form as follows: 

 
1 1

0
1 1

ˆ
ˆ1

e iN p I
I i i

iI
i i i i

e
d e







 


 

 
K K D

1 1 11 1 1 1  


i i id ei i id ei i ii i ii i id ed ei i id ei i ii i id ei i id e d ei i id ei i i i i id ei i i

(16)

where 
( )T 1 ( ) 1 ( ) ( )T 1

0 0 0; .i i i i i id    v K s D K s v K( )T 1 ( ) 1 ( ) ( )T 1; .1 ( ) ( )T 1; .1 ( ) ( )T 1
0; .0

1 ( ) ( )T 11 ( ) ( )T 1v K s D K s v K( )T 1 ( )v K s D K s v K( )T 1 ( ) 1 ( ) ( )T 1v K s D K s v K1 ( ) ( )T 1; .v K s D K s v K; .1 ( ) ( )T 1; .1 ( ) ( )T 1v K s D K s v K1 ( ) ( )T 1; .1 ( ) ( )T 1( )T 1 ( )( )T 1 ( )v K s D K s v K( )T 1 ( )( )T 1 ( ) v K s D K s v K

0; .0; .0i i i i0i i i i0 ; .i i i i; .i i; .i i; . v K s D K s v K( )T 1 ( )v K s D K s v K( )T 1 ( )v K s D K s v K0v K s D K s v K0 ; .v K s D K s v K; .0; .0v K s D K s v K0; .0i i i iv K s D K s v Ki i i i0i i i i0v K s D K s v K0i i i i0 ; .i i i i; .v K s D K s v K; .i i i i; .; .i i; .v K s D K s v K; .i i; . v K s D K s v K ( )T 1 ( ) ( )T 1 ( )v K s D K s v K( )T 1 ( ) ( )T 1 ( )v K s D K s v K( )T 1 ( )v K s D K s v K( )T 1 ( )
0v K s D K s v K0 ; .v K s D K s v K; .1 ( ) ( )T 1; .1 ( ) ( )T 1v K s D K s v K1 ( ) ( )T 1; .1 ( ) ( )T 1

0; .0v K s D K s v K0; .0 v K s D K s v K ( )T 1 ( ) ( )T 1 ( )v K s D K s v K( )T 1 ( ) ( )T 1 ( ); . ; .v K s D K s v K; . ; . (17a,b)
Equation (16) provides the following approximate closed-form expression of the interval displacement 

vector:

 
1

0
1 1

ˆ
ˆ1

e iN p I
I I i i

iI
i i i i

e
d e






 


  

 
U K F U D FD F

1 1 11 1 1 1  


i i id ei i id ei i ii i ii i id ed ei i id ei i ii i id ei i id e d ei i id ei i i i i id ei i i

(18)

where 1
0 0

U K F is the solution pertaining to the nominal system. 

3.2. BOUNDS OF THE INTERVAL DISPLACEMENTS
In order to evaluate the lower bound and upper bound of the interval displacement vector, Eq. (18) can be 
conveniently rewritten in the following affine form: 

 0 0,
1 1

ˆ
e iN p

I I
i i i i

i
a a e

 

   U U D Fi i i ii i i ia a ei i i ia a ei i i ia a e   a a ei i i ia a ei i i i   i i i ia a ei i i iD FD Fi i i iD Fi i i ii i i iD Fi i i i 0,
1 11 1 1 1
 (19)

where 0,ia and ia are the midpoint and deviation amplitude of the generic term of the double 
summation in Eq. (18), given by: 

   

2

0, 2 2;      .
1 1

i i i
i i

i i i i

da a
d d

 

 

 
  

   
;      a a;      a a;          

 
2 2

 
2 2

 1 1 1 1 
i

i i
 

i i
 

2 2i i2 22 2;      2 2i i2 2;      2 21 1i i1 1 1 1 
i i

 1 1 
a aa a;      a a;      i ia ai i

i ia ai i2 2i i2 2a a2 2i i2 2;      i i;      a a;      i i;      2 2;      2 2i i2 2;      2 2a a2 2;      2 2i i2 2;      2 2d d d d 
2 2d d2 2

 
2 2

 d d 
2 2

 1 1d d1 1 1 1 d d 1 1 
2 21 12 2d d2 21 12 2i id di i

 
i i

 d d 
i i

 
2 2i i2 2d d2 2i i2 21 1i i1 1d d1 1i i1 1 1 1 

i i
 1 1 d d 1 1 

i i
 1 1 

2 21 12 2i i2 21 12 2d d2 21 12 2i i2 21 12 2
 1 1   1 1   d d   d d d d d d1 1d d1 1 1 1d d1 1 1 1 d d 1 1   1 1 d d 1 1 

a aa a 2 2 2 2i i i i2 2i i2 2 2 2i i2 2a a a ai ia ai i i ia ai i2 2i i2 2a a2 2i i2 2 2 2i i2 2a a2 2i i2 21 1 1 1 1 1   1 1 
i i

 
i i

 
i i

   
i i

 1 1i i1 1 1 1i i1 1 1 1 
i i

 1 1   1 1 
i i

 1 1 d d d d d d   d d 
2 2d d2 2

 
2 2d d2 2

 
2 2

 d d 
2 2

   
2 2

 d d 
2 2

 d d d d d d d d d d   d d   d d   d d 
a aa a;      a a;      i ia ai i2 2i i2 2a a2 2i i2 2;      i i;      a a;      i i;      2 2;      2 2i i2 2;      2 2a a2 2;      2 2i i2 2;      2 2

    i i  d d  i i d d i i         d d d d d d   d d   d d   d d 1 1d d1 1 1 1d d1 1 1 1 d d 1 1   1 1 d d 1 1 d d d d d d d d d d   d d   d d   d d   d d  d d   d d d d d d1 1d d1 1 1 1d d1 1 1 1 d d 1 1   1 1 d d 1 1 d d d d d d d d d d   d d   d d   d d 
(20a,b)

The argument i of the functions 0,ia and ia  is omitted for conciseness. 
Based on Eq. (19) and applying the IIA via EUI, the following approximate explicit expressions of the 

LB and UB of the interval displacement vector IU  are obtained: 
   ( ) mid ( );     ( ) mid ( )I I   U α U U α U α U U α (21a,b)

where 
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1 1 1
( )

e e iN N p

i i i
i i

a
  

    U α R D Fi iD Fi iD Fi i
1 11 1 1 1

  (22)

is the deviation amplitude of IU and the symbol | | denotes absolute value component wise. 

4. Sensitivity Analysis 

The IRSE allows the evaluation of the interval displacement vector and the associated bounds in 
approximate closed-form. As known, the knowledge of the explicit dependence of the structural response 
on the design parameters is very useful for several purposes, such as reanalysis, optimization, sensitivity 
analysis, reliability analysis, etc. In this section, attention is focused on the evaluation of the sensitivities of 
the response with respect to the uncertain parameters. To this aim, let us recast Eq. (18) in the following 
form:

0
1 1

( )
1

e iN p
i

i
i i id



 

 


U α U D FD F
1 1 11 1 1 1 


i ii ii i

(23)

where ˆI I
i i i ie     . Direct differentiation of Eq.(23) yields the following approximate explicit 

expression of the vector collecting the sensitivities of the interval displacements with respect to the i -th 
uncertain parameter: 

,
1

( ) ,    ( 1,2, , ).
ip

i i e
i

i N
 


   


U

α 0

U αs D F,    ( 1,2, , ).   ,    ( 1,2, , ).   ,    ( 1,2, , ).D F   D F   
1
 ,    ( 1,2, , ).e,    ( 1,2, , ).e,    ( 1,2, , ).,    ( 1,2, , ).i N,    ( 1,2, , ).,    ( 1,2, , ).e,    ( 1,2, , ).i N,    ( 1,2, , ).e,    ( 1,2, , ). (24)

Sensitivities enable to predict how structural response is affected by a small change of the uncertain 
parameters. In the context of the presented IFEM, the knowledge of explicit response sensitivities can be 
exploited to enhance the computational efficiency of the IRSE. Indeed, the main drawback of the IRSE is 
that it involves a double summation (see Eq. (23)) which may be time consuming for real-sized structures. 
However, it can be readily inferred that not all the terms appearing in the IRSE approximation of the 
response (23) are equally important since each uncertain parameter has a different effect on the various 
DOFs of a structure. Based on this observation, we may perform a sensitivity analysis in order to detect 
those parameters which actually have a negligible influence on the response of a given DOF and then omit 
the corresponding contribution in the IRSE. This approach enables a drastic reduction of the computational 
time required by the IRSE which therefore can be efficiently used to analyze the response of structures with 
a large number of uncertain parameters. 

The most influential parameters for each DOF can be identified by evaluating the so-called coefficient 
of sensitivity which provides a percentage measure of the global variability of the response with respect to 
its nominal value due to the generic uncertain parameter. Specifically, the coefficient of sensitivity of the 
nodal displacement ( )jU α with respect to the i -th parameter i can be defined as follows (Muscolino et 
al., 2014):

,
0,

( )1(%) 100
j

j
i U i

j i

U
U

 




 
   

  α 0

α
(25)

where i denotes the deviation amplitude of the dimensionless interval parameter [ , ]i i i     ;

0, ( )j jU U



α 0

α is the nominal value of the j -th displacement component.  
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For each DOF, the most crucial uncertain parameters are those characterized by higher values of the 
coefficient of sensitivity. Retaining only the terms of the IRSE corresponding to these parameters, say

er N , allows one to obtain simpler and more efficient analytical approximations of the response.

5. Numerical Application 

For validation purpose, the response of a 3D cantilever beam with uncertain Young’s modulus of the 
material (Figure 1) is analyzed. The beam is subjected on the top edge to a deterministic transversally 
distributed load 210 kN/mzp  . The following geometrical properties are assumed: length 5mL  and 
rectangular cross section with width 0.25 mb  and thickness 0.5 mh  . The nominal Young’s modulus 
and Poisson ratio of the material are selected as 0 230 GPaE  and 0.3  , respectively. A uniform FE 
mesh consisting of 320eN  eight-node brick elements is adopted. Young’s modulus of each FE is 
modelled as an interval variable ( )

0 ˆ( ) (1 )i I I
i i iE E e   with 0.1i     , ( 1,2, , ei N1,2, , ei N1,2, ,i N1,2, , ei Ne ).  

The spectral decomposition of the nominal element stiffness matrix, ( ) ( )
0 ( )i i

i 


α 0
k k , is adopted in 

order to decompose the global stiffness matrix according to Eq. (15) and then apply the IRSE. In this case, 
18ip  represents the number of deformation modes of the eight-node brick FE. The proposed IFEM is 

applied to evaluate the bounds of the interval displacement components, I
zjU , ( 1,2, ,20)j ( 1,2, ,20) , along the z -

axis of twenty selected nodes shown in Figure 1.  

Figure 1. 3D cantilever beam with uncertain Young’s modulus. 

The accuracy of the estimates of displacement bounds could be assessed by comparisons with the exact 
bounds evaluated by applying a combinatorial procedure, known as vertex method (Dong and Shah, 1987). 
However, for the selected application, the vertex method is unfeasible since it requires 3202 deterministic 
analyses, as many as are the possible combinations of the endpoints of the uncertain parameters. For this 
reason, a comparison with the results obtained by applying a procedure based on sensitivity analysis 
(Pownuk, 2004; Kreinovich et al., 2007), herein referred to as Sensitivity Method (SM), is carried out. 
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First, the sensitivity of beam’s response to the variability of Young’s moduli of the 320eN  FEs is 
investigated by exploiting the closed-form expressions of displacement sensitivities derived from the IRSE
(see Eqs. (24)). Figure 2 displays the sensitivities of the 20 nodal displacements ( )zjU α , ( 1,2, ,20j 1,2, ,20 ), of 
interest with respect to the fluctuations of the uncertain Young’s moduli of eight selected FEs highlighted in 
Figure 1.  

Figure 2. Sensitivities of the 20 selected nodal displacements of the cantilever beam with respect to the fluctuations of eight 
uncertain Young’s moduli  ( ) ( )

0( ) 1i I i I
i iE E   , (see Figure 1).

In order to identify for each DOF the most crucial parameters, sensitivities can be ranked based on the 
corresponding coefficients of sensitivity reported in Figure 3. For instance, it can be observed that for all 
displacements the largest coefficients of sensitivity are those pertaining to the parameters 157 and 320

which, therefore, turn out to be the most influential among the eight selected parameters. Conversely, 93

and 164 are characterized by the smallest coefficients of sensitivity which means a less significant 
influence on the response. It is also observed that the displacement 1( )zU α is more sensitive to variations of 
the parameters 157 and 320 than the other displacements. 

Based on the results of sensitivity analysis, a reduced form of the IRSE can be deduced by retaining for 
each DOF just the terms associated to the most influential uncertain parameters. Figure 4 shows a possible 
selection of the number jr of significant terms of the IRSE for the 20 nodal displacements ( )zjU α ,
( 1,2, ,20)j ( 1,2, ,20). Notice that the largest number of terms is needed to approximate 20 ( )zU α and it is still 
much smaller than the total number of uncertain parameters. This allows a substantial reduction of the 
computational effort. 
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Figure 3. Coefficients of sensitivity of the 20 selected nodal displacements of the cantilever beam with respect to the fluctuations of 
eight uncertain Young’s moduli  ( ) ( )

0( ) 1i I i I
i iE E   , ˆI I

i ie    with 0.1   (see Figure 1). 

 
 

 
Figure 4. Number of terms jr  retained in the reduced IRSE for the 20 selected nodal displacements of the cantilever beam based on 

sensitivity analysis ( 0.1i  ). 

 
Figure 5 shows the comparison between the proposed bounds of the 20 selected nodal displacements 

obtained by applying the complete IRSE (with all terms retained) and a reduced IRSE involving just the 
number of terms reported in Figure 4. For validation purpose, the LB and UB of displacements provided by 
the SM are also reported. It can be seen that both the complete and reduced IRSEs yield approximate bounds 
in good agreement with those obtained by applying the SM. Furthermore, it is observed that the estimates 
pertaining to the reduced IRSE are very close to those provided by the complete IRSE. In particular the 
absolute percentage errors between the two approximations, reported in Figure 6, are always less than 0.5%. 
This demonstrates that terms omitted from the IRSE are actually negligible and the computational efficiency 
of the proposed IFEM can be greatly enhanced without affecting the accuracy of the results. 
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Figure 5. LB and UB of the 20 selected nodal displacements in the load direction of the cantilever beam with uncertain Young’s 
moduli: comparison between the proposed bounds obtained by applying the reduced IRSE resulting from sensitivity analysis, the 
complete IRSE and the solution provided by the SM ( 0.1i  ). 

 
 

     
Figure 6. Absolute percentage errors affecting the LB and UB of the 20 selected nodal displacements of the cantilever beam 
provided by the reduced IRSE resulting from sensitivity analysis compared to the bounds yielded by the complete IRSE 
( 0.1).i   

 
 

6. Conclusions 
 
A novel Interval Finite Element Method (IFEM) for the static analysis of linear structures with uncertain 
parameters modeled as interval variables has been presented. The formulation relies on the use of the so-
called improved interval analysis, recently introduced to limit the overestimation affecting the classical 
interval analysis. Accordingly, a particular unitary interval, called extra unitary interval, is associated to 
each uncertain parameter thus enabling to keep track of the dependencies between interval uncertainties in 
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both the assembly and solution stages of the finite element procedure. The bounds of the interval 
displacements have been derived in approximate explicit form by applying the so-called Interval Rational 
Series Expansion (IRSE). Then, it has been shown that a preliminary sensitivity analysis of the response 
allows a drastic reduction of the computational effort required by the IRSE thus making the IFEM 
applicable to structures with a large number of uncertain parameters. To demonstrate the accuracy and 
efficiency of the proposed IFEM, a 3D cantilever beam with uncertain Young’s modulus has been analyzed. 
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Appendix-Improved Interval Analysis via Extra Unitary Interval 
 
Interval computations based on the classical interval analysis (CIA) suffer from the overestimation due to 
the so-called dependency phenomenon which occurs when an expression contains multiple instances of one 
or more interval variables (Moore et al., 2009). In order to limit the conservatism due to this phenomenon 
and thus allow the applicability of the interval model of uncertainty to engineering problems, recently the 
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improved interval analysis via extra unitary interval (IIA via EUI) has been proposed (Muscolino and Sofi, 
2012). The key idea of the IIA via EUI is to express the i -th interval variable I

i  in the following affine 
form: 

0, ˆI I
i i i ie     (A.1) 

where  ˆ 1, 1I
ie     is the EUI which does not follow the rules of the CIA, i.e.: 
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 (A.2a-f) 

In these equations, [1,1] 1  is the so-called unitary thin interval (Moore et al., 2009). It is worth 
emphasizing that the subscript i means that the EUI, ˆ I

ie , is associated to the i-th interval variable. By 
associating a different EUI to each interval variable, dependencies can be duly taken into account 
throughout calculations and the overestimation due to the dependency phenomenon can be drastically 
limited.  
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Abstract: The developed method for a fail-safe optimal design of structures is based on a coupled
approach of optimization involving a genetic algorithm, the fracture mechanical analysis, and un-
certainty analysis enabling the quantification of epistemic uncertainty in the fracture process. The
fail-safe structures are intended to retain their functionality even if subjected to certain damage
conditions, e.g. a local failure of structural members. In the proposed approach, the failure process
is modeled by means of the finite element analysis, employing the concept of discrete fracturing as
well as the configurational mechanics based criteria. The investigations on safe failure are enhanced
by the quantification of the influence of uncertainties. The uncertainties arising in the failure process
of structures, which is governed by crack initiation and growth phenomena are not restricted to
variability and randomness. In a structure designed as a system of coupled substructures, the crack
initiation position is uncertain but not random, since it results from the boundary conditions change
initiated by the occurrence of a certain failure scenario and damage of particular neighbouring
structural members. For the modeling of this type of uncertainty, the uncertainty model fuzziness
is applied. By means of the proposed method, the optimal design configuration is identified under
the consideration of the uncertain crack propagation.

Keywords: fail-safe design, optimization, uncertainty model fuzziness, fracture mechanics

1. Introduction

In civil and mechanical engineering, the fail-safe design concepts are gaining on importance. Thus,
for crucial structures, in parallel to standard design procedures aiming at providing sufficient load-
bearing capacity, safe failure modes are planned and special design solutions are introduced to
enforce an intended structural behavior in case of failure due to unforeseen events as extraordinary
loading, impact, fatigue or material defects. Thereby, the main objective is to develop structures,
which continue to perform its basic functions even under a certain damage level and are prevented
from the catastrophic failure in form of chain reaction like sequential dysfunction of structural
components. The fail-safe design strategy constitutes one of three engineering design concepts
accounting for failure, next to the safe-life and the damage tolerance design principles (Dilger et
al., 2009), (Wood and Engle, 1987), (Cazes, 2013).

The fail-safe design strategies are based upon the application of special design solutions as the
redundancy of structural parts, multiple load paths or intentional weak links. Further solutions,
considered also in the present contribution, are based on the application of crack arresters, which
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hinder the crack propagation permitting solely the local failure of a substructure and preventing
from damage escalation (Zhang et al., 2009). In parallel to the mentioned particular fail-safe design
solutions, some systematic fail-safe design optimization approaches are introduced in (Sun et al.,
1976), (Nguyen and Arora, 1982) and (Shechter, 1994). Though, the application of these approaches
is limited to truss-like structures and the failure modeling is restricted to the failure of joints. In the
present work, a fail-safe design optimization procedure is proposed, which involves failure modeling
on the basis of a fracture mechanical solution and is thus applicable to a wider range of structures. In
particular, the investigation of the failure process is introduced within a finite element framework by
combination of discrete fracturing and configurational mechanics based criteria (Özenç and Kaliske,
2014), (Eshelby, 1951).

Furthermore, the proposed fail-safe design optimization approach is based upon the analysis of
uncertainties in the fracture process. An established approach for the consideration of uncertainty of
random nature in failure events is the probabilistic fracture mechanics, which is commonly applied
for reliability assessment of structures (Rahman, 2001), (Rahman, 2002), (Novák et al., 2005),
(Leonel et al., 2010). Further contributions on uncertainty consider a probabilistic fatigue crack
growth model (Yang and Manning, 1996), (Besterfield et al., 1991), (Riahi et al., 2010) or investigate
the size effect in probabilistic modeling of quasibrittle fracture (Bǎzant, 2001), (Vorechovský, 2004).
In contrary, in the present work, nonstochastic uncertainty model − the model fuzziness (Möller
and Beer, 2004), (Möller et al., 2000) is applied for the characterization of the crack initiation
phenomenon in a structural system with coupled substructures.

The introduced fail-safe design optimization method is numerically realized as a coupled ap-
proach of a genetic algorithm based optimization, the fracture mechanical analysis and the fuzzy
analysis. The interaction between the genetic algorithm and the fracture analysis enables to guide
the uncertain crack path propagation direction into substructure preserved with crack arresters and
thus to identify fail-safe designs, for which only local failures of substructures can occur instead of
total failure of the system.

2. Fail-Safe Design Task

The exhibiting of a fail-safe function by a structure is understood as performing according to a
predefined safe failure mode defined by a projected, not extensive failure of substructures, while
the global system stability is maintained. In addition, the pursuation for the optimality implies that
a design configuration is identified, for which the optimal performance within numerous objective
functions, also related to safe failure, is expected. The safe failure modes are developed for a
structure under the assumption, that the damage of particular substructures occurs in such a
manner, that the neighbouring crucial structural elements, which substantially contribute to the
global system stability keep performing in an undamaged condition. In the herein introduced fail-
safe design strategy, a design concept of a substructure with damage accumulating function is
developed, assuming that if this substructure is integrated within a system of coupled substructures
it will hinder the progress of the failure mechanism towards crucial structural elements.

For numerical efficiency reasons, the presented fail-safe design optimization task can be solved
within a two-step procedure involving: (i) the design optimization of the whole structure and
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(ii) the subsequent detailled design of the damage accumulating element. The multi-objective
design optimization task of the whole structure, solved in the first step, includes objective functions
evaluated in an undamaged condition of the structure, e.g. minimal mass, deformations, production
costs as well as in the damaged condition, focusing on obtaining an intended failure path/mode,
which ends up in the damage accumulating element. In the second step of the fail-safe design
procedure, the design optimization of the damage accumulating element is accomplished, with the
initial design configuration identified within the first procedure step. Various loading cases and
boundary condition changes of the damage accumulating element are taken into account, which are
identified in the analysis of failure modes within the optimization of the whole structure.

The occurrence of a particular failure mode involves a dysfunction of specific substructures,
joints or structural members, which are merged to the damage accumulating substructure. The
resulting boundary condition changes within the damage accumulating substructure in form of
support removal, support displacement or additional loads, lead to stress concentration and may
provoke crack nucleation. In order to hinder possible crack propagation, structural elements in form
of crack arresters are introduced within the damage accumulating substructure. In this contribution,
the second step of the fail-safe design procedure is of main interest and thus a novel concept for
the design of the damage accumulating substructure is provided.

For the structure mechanics based design optimization of the damage accumulating substructure,
this substructure is considered as a body in the Euclidean space B ∈ E 3, surrounded by the
boundary Γ, as shown in Figure 1. The body is subjected to body forces b and surface tractions t,
which are assigned to the part ΓF ∈ Γ. At the part Γb ∈ Γ, displacement boundary conditions are
prescribed. The body includes an initial crack of length γin, which arises in consequence of local
stress concentrations induced by the occurrence of a failure mode. The controlling of partial damage
in form of crack propagation and hindering its escalation to further structural components is ob-
tained by the application of crack arresters. In the investigated damage accumulating substructure,
nc crack arresters are assembled, each with a boundary ΓAi, i = 1, ..., nc and a geometrical position
vector χAi defined with respect to the reference point P ∈ B. In Figure 1, the body B with a single
crack arrester is presented as an example.

�

�F�Ai

�
Ai

P

�
cr

�1

�2

�3 �b

�
in

Figure 1. Structure mechanical configuration of the damage accumulating substructure.
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The nonlinear multi-objective optimization problem of the damage accumulating substructure
is defined as

min
xd∈X⊂Rn

f(xd, p̃a) = {f1(xd, p̃a), f2(xd, p̃a), ...fi(xd, p̃a), ..., fm(xd, p̃a)} ,

fi(xd, p̃a) = K (γ̃cr(xd, p̃a,F))

subject to GM (xd, p̃a) = ∇X ·Σt + B = 0 (1)

gk(xd, p̃a) ≤ 0 k = 1, 2, ..., p,

hl(xd, p̃a) = 0 l = 1, 2, ..., q.

The major optimization objective of the optimization task in Eq. (1) focuses on the identification
of the geometrical configuration χAi of the crack arresters, so that the uncertain crack propagation
γ̃cr(xd, p̃a,F) is always limited by the crack arrester. Within the definition of the major optimization
objective fi(xd, p̃a), K represents a function utilized for the quantification of the uncertain crack
propagation γ̃cr, which will be discussed in Section 4. Further objective functions can be considered
as well.

In Eq. (1), the objective functions fi, (i = 1, 2, ...,m) evaluate two types of input parameters,
the design variables xd and the uncertain a priori parameters p̃a. They are represented by an n-
dimensional design vector xd = {xd 1, xd 2, ..., xdn}T and the s-dimensional vector of uncertain a

priori parameters p̃a = {p̃a 1, p̃a 2, ..., p̃a s}T respectively. In the presented optimization problem,
hl(xd, p̃a) = 0 denote nonlinear equality constraints and gk(xd, p̃a) ≤ 0 inequality constraints.

Due to the fact, that the major objective function considered in Eq. (1) evaluates the uncer-
tain crack propagation function γ̃cr(xd, p̃a,F), the fracture mechanical analysis is applied for the
solution of the optimization task. The crack propagation is governed by the energy minimization
method on the basis of the configurational forces F . The configurational forces are derived from
the material momentum balance equation GM and then applied for the energy minimization prin-
ciple to determine the crack growth direction, compare (Özenç and Kaliske, 2014). The material
balance equation GM evaluates forces acting on material inhomogeneities of continuous media in
the material space, compare (Eshelby, 1951), (Eshelby, 1975) and (Steinmann, 2000), in contrast
to the balance laws formulated in the framework of classical Newtonian mechanics, which involve
physical forces. The forces considered within GM are denoted as configurational or material forces
and defined as thermodynamical driving forces. In the optimization task in Eq. (1), the material
balance equation GM yielding the material forces is introduced as an optimization constraint.
Thereby, GM considers a stress measure conjugate to the material forces F , the Eshelby stress
tensor Σ as well as the material body force B.

In subsequent sections, various aspects of the optimization task are discussed, as the formulation
of the uncertain parameters related to crack initiation and growth and the definition of the objective
functions. Finally, a solution concept for the presented fail-safe design optimization problem is
provided.
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3. Uncertain Crack Initiation and Propagation in Fail-Safe Structures

An important aspect of a fail-safe design strategy is the assessment of potential crack initiation
location as well as the prediction of the crack propagation image, taking into account the uncertain-
ties in the fracture processes. A major assumption of the introduced fail-safe design optimization
approach is, that in a system with coupled substructures, the crack initiation location in the
damage accumulating substructure is uncertain but not random, since it results from the boundary
conditions change induced by the occurrence of a certain failure mode and failure of particular
neighbouring structural elements. Thus, the nature of the crack initiation process in the context
of safe failure of structures designed as a system of coupled substructures differs significantly from
e.g. fatigue induced failure of independent systems, which is governed by the crack initiation at
randomly distributed material inhomogeneities.

The crack initiation in the damage accumulating substructure is visualized in Figure 2. For
the considered body B, the boundary Γb with prescribed displacement boundary conditions is
divided into three parts Γb1, Γb2, Γb3, whereas each part denotes a support or joint connecting
B with neighbouring structural elements. Should the structure fail according to the first planned
failure mode, the failure of support/joint associated with Γb1 within the damage accumulating
substructure is expected. Thereby, the consequence of the removal of the boundary part Γb1 is the
crack initiation at a position in body B, which is shown in Figure 2 b). The most possible crack
initiation location is marked with the black color and the crack initiation locations with gradually
decreasing occurrence possibility are indicated by shading in the gray scale. Though, the occurrence
of the second planned failure mode, provokes the removal of boundary Γb2 and the uncertain crack
initiation in a quite different part of the body B, compare Figure 2 c). For the description of the
crack initiation phenomena, the framework of the possibility theory is chosen.

The framework of the fuzzy set theory yields mathematical foundations for the theory of possi-
bility (Dubois and Prade, 1980), (Zadeh, 1965). Especially, the fuzzy set theory based uncertainty
model fuzziness is applicable if incomplete, limited statistical or subjective information is evaluated.
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Figure 2. Crack initiation due to the boundary change.
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Figure 3. Definition of a fuzzy variable.

Since the information required for modelling the crack initiation position as an uncertain parameter
is based on vaque data and/or stems from expert evaluations, its modeling by means of fuzzy sets
is reasonable. The fuzzy set Ã is defined as

Ã = {(x, µA (x)) | x ∈ X} . (2)

The gradual membership of the elements x ∈ X to the fuzzy set Ã is specified by a membership
function µA, as visualized in Figure 3 a)

µA : X → [0, 1]. (3)

The definition of the crack initiation position as a fuzzy set requires the assessment of a set
of material points in a subregion of the body XB ⊆ B according to the crack initiation potential.
The gradual assessment suceeds by means of the membership function µA, compare Figure 3 b). In
order to provide an interpretation in the context of the possibility theory, a possibility measure Π in
the measure space [XB,Σ,Π] is assumed, with Σ as the σ-Algebra on XB. Thereby, the possibility
measure Π denotes a subjective assessment of the possibility of the occurrence of an event, which
is e.g. defined by the crack initiation at a particular point x ∈ XB. Consider a variable p̃a taking
values in XB, which is characterized by the possibility distribution function πd (p̃a). Thereby, πd (p̃a)
is defined to be equal to the membership function µA of the set Ã

πd (p̃a) = µA. (4)

Thus, an advantageous description of the crack initiation event is obtained since every realization
x of the fuzzy variable p̃a is quantified by the possibility measure Π and has an assigned degree of
possibility µA (x).
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The herein presented fail-safe design procedure is based on the solution of the multi-objective
optimization task, where the objective functions fi(xd, p̃a), i = 1, ...,m evaluate uncertain input
parameter, e.g. the uncertain crack initiation location. Especially, within each objective function
fi(xd, p̃a), i = 1, ...,m considered in Eq. (1), a mapping of a design vector xd, and uncertain
parameters vector p̃a onto uncertain structural responses z̃i = fi(xd, p̃a) is accomplished by means
of the fracture mechanical analysis

fi : Rn × U(Rs) → U(R), (5)

(xd, p̃a) 7→ z̃i.

In Eq. (5), U(·) stands for the set of all fuzzy sets, defined respectively, on the space of uncertain
parameters U(Rs) and on the objective space U(R) ∈ Rm. Rn denotes the space of design variables.
The outputs of the objective functions fi(xd, p̃a), i = 1, ...,m are uncertain structural responses
z̃i ∈ U(Rm), i = 1, ...,m in form of fuzzy sets. The generation of z̃i is accomplished by means of
the fuzzy analysis on the basis of the α-level optimization (Möller et al., 2000) and involves the
discretization of both, the fuzzy input parameters p̃a and fuzzy responses z̃i into crisp sets Sα(p̃a)
and Cα(z̃i)

Sα(p̃a) = {x ∈ R : µA ≥ α} , (6)

p̃a = (Sα(p̃a))α∈(0,1]. (7)

z̃i = (Cα(z̃i))α∈(0,1] . (8)

The uncertain structural responses z̃i can be obtained as fuzzy numbers or may exhibit time τ and
space θ dependency and, thus, be characterized by uncertain functions in form of fuzzy processes
z̃i (τ) , τ ∈ T = R4 and fuzzy fields z̃i (θ) , θ ∈ T . The structural response, which is of main interest
in this work is the uncertain crack propagation obtained as a fuzzy curve. According to the α-level
discretization, the fuzzy crack propagation curve γ̃cr is defined by sets Cα(γ̃cr) of trajectories γcr

γ̃cr = (Cα(γ̃cr))α∈(0,1] ; Cα(γ̃cr) =
{
γcr ∈ E 3 : µz ≥ α

}
. (9)

Each trajectory γcr is equivalent to a deterministic realization of the uncertain propagation curve
and corresponds to a deterministic fracture image, compare Figure 4. The set Cα(γ̃cr) assembles
trajectories, which have at least the assigned membership µz ≥ α. In addition, every deterministic
crack propagation γcr can be assessed with respect to the possibility of occurrence πd = µz. Each
trajectory γcr is defined as a set of nθ points θic in the body B

γcr =
{
θ1
c ; ...,θ

i
c, ...,θ

nθ
c | θic = [θ1, θ2, θ3] ∈ B

}
, (10)

where the identification of the point θi+1
c , subsequent to the point θic, is based on the computation

of the material force vector F .
For the uncertain crack propagation γ̃cr, the bounding curves γ̃

b
cr, γ̃bcr, which envelope all

trajectories γcr, may be specified

γ̃bcr = min
θZijc |j

[γcr | γcr ∈ Cα=0(γ̃cr)], (11)
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γ̃bcr = max
θZijc |j

[γcr | γcr ∈ Cα=0(γ̃cr)]. (12)

In Eq. (11) and (12), θZij
c stands for a position vector projected from the three-dimensional Eu-

clidean space E 3 with dimensions denoted by i, j, k ∈ {1, 2, 3} | i 6= j 6= k onto two-dimensional
Euclidean space E 2 with dimensions i, j. The bounding curves indicated by black dashed line in
Figure 4, are evaluated within the fail-safe design optimization procedure.
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Figure 4. Fuzzy crack propagation curve.

4. Fail-Safe Design Optimization

In the following, the solution of the fail-safe optimal design problem, which is formulated as a the
multi-objective optimization task with uncertain (fuzzy) parameters is presented. Since ordering of
the objective function outputs is an inherent function of every optimization procedure, the order
relations for the uncertain structural responses z̃i, z̃i (τ), γ̃cr need to be developed. The herein
applied order is based on the application of the information reducing measures Mj : U (R) → R,
(Serafinska et al., 2013), (Graf et al., 2010), (Sickert et al., 2009).

Due to the utilization of information reducing measuresMj and the application of the scalariza-
tion approach for the multi-objective optimization problem in form of the weighted sum method,
the objective function vector f(xd, p̃a) in Eq. (1) turns to

f(xd, p̃a) =

k∑
i=1

l∑
j=1

wijMj (z̃i) +
m−1∑
i=k

u−1∑
j=l

wijKij (Mj (z̃i (τ))) + wmuKmu (Mu (γ̃cr)) , (13)
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150



A Fail-Safe Design Approach Based on the Fracture Mechanical Analysis and Epistemic Uncertainty Quantification

where z̃i = fi(xd, p̃a) and wij are the weighting factors. In Eq. (13), the information reducing
measuresMj are applied to the uncertain structural responses obtained as fuzzy quantities z̃i, fuzzy
functions z̃i (τ) and fuzzy curves γ̃cr. Thereby, for fuzzy quantities z̃i, the measures Mj defined
as the zeroth moment, the variance or the Shannon’s entropy quantify the information content,
e.g. the uncertainty of z̃i and reduce z̃i to a crisp value (Sickert et al., 2009). The quantification
of the information content of an uncertain function/curve by means of Mj is equivalent to the
identification of deterministic representatives of the fuzzy function/curve, important for a particular
optimization objective. An example of representative curves are the deterministic bounding curves

γ̃
b
cr, γ̃bcr of the uncertain crack propagation γ̃cr shown in Figure 4

Mu (γ̃cr) =
{
γ̃bcr; γ̃

b
cr

}
. (14)

A significant fail-safe design objective is the identification of a design with an optimal position
of the crack arresters χAi, so that all trajectories γcr of the uncertain crack propagation curve
γ̃cr reach the boundary of the crack arrester ΓAi. Since all trajectories γcr of the uncertain crack

propagation curve are located between the bounding curves γ̃
b
cr, γ̃bcr, the fail-safe criterion is satisfied

if the bounding curves approach the boundary of the crack arrester. Thus, every bounding curve
must be assessed with respect to the aspired propagation direction and path. Thereby, the aspired
propagation path is defined a priori based on the assumption, that the propagation ends up at the

crack arrester, as shown in Figure 4. In Eq. (13), the coincidence between bounding curves γ̃
b
cr, γ̃bcr

and the conjugate aspired crack propagation paths ζb, ζb is quantified by the function K utilizing
the Euclidean distance metric dE

Kmu (Mu (γ̃cr)) =

nθ∑
l=1

P
[
dE

(
γ̃bcr; ζ

b
)]

+

nθ∑
l=1

P
[
dE

(
γ̃bcr; ζ

b
)]
. (15)

In Eq. (15), nθ stands for the number of discrete points θc on the bounding curve of the uncertain
crack propagation and P is the arbitrarily defined penalty function. The aspired crack curve, e.g.
ζb, is specified on the basis of the initial conditions ζb 0, which are known since they are derived
from the definition of the uncertain crack initiation point as a fuzzy quantity p̃a

ζb 0 = θ0
c ; θ0

c = min [θc | θc ∈ Sα=0(p̃a)] . (16)

Further coordinate ζb nθ of the aspired crack curve ζb is prescribed on the boundary of the crack
arrester and defined with respect to the location vector of the crack arrester χAi

ζb nθ = θnθc ; θnθc = χAi. (17)

The interpolation between points ζb 0 and ζb nθ is defined e.g. as a linear function. The aspired
crack propagation paths are indicated by a dashed red line in Figure 4. The optimization algorithm
identifies an advantageous position of crack arresters, for which the distance between the aspired
crack paths and the corresponding bounding curves of the uncertain crack propagation is minimized
and all realizations γcr reach the boundary of crack arresters.
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5. Numerical Realization

The numerical realization of the presented fail-safe design optimization concept is based upon a
three level procedure implemented as a nested loop approach, compare Figure 5. Accordingly, the
optimization constitutes the first level and the outer loop of the numerical procedure whereas the
fuzzy analysis establishes the second level and the first inner loop. Within the fuzzy analysis, the
fracture mechanical analysis in the finite element framework is executed.

The binary genetic algorithm applied at the optimization level, starts with initialization of the
first population of design vectors ξω, ω = 0, and the vector of uncertain a priori parameters p̃a.
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Figure 5. Schematic presentation of the optimization approach.
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In the course of the optimization, for each design vector xid, i = 1, ..., npop in the population ξω,
the fuzzy analysis is executed, yielding for every considered objective function fi(xd, p̃a) a fuzzy
output quantity z̃i, z̃i (τ) or γ̃cr, where i = 1, ...,m−1. The computation of fuzzy output quantities
within the fuzzy analysis involves the determination of the shape of the membership function µz and
the support ranges Cα=0(z̃i). In the present approach, the fuzzy analysis is conducted by means
of the α-level optimization procedure, introduced in (Möller et al., 2000). Thereby, the α-level
optimization for the determination of the fuzzy crack propagation curve involves the Monte Carlo
simulation. Especially, the Monte Carlo simulation is accomplished to identify the crack initiation
points. The crack propagation curves resulting from the identified initiation points are evaluated
at discrete spatial points to determine the extrema of the spatial dispersion of the uncertain crack
propagation at each α-level.

Subsequently, the uncertain responses z̃i, z̃i (τ) and γ̃cr obtained for every considered design
xid are evaluated with the function f (xd, p̃a) in Eq. (13). Since the formulation of f (xd, p̃a) is
facilitated by the information reducing measures Mj , f (xd, p̃a) yields a crisp output for a par-
ticular design xid. Obtaining of crisp outputs permits the ordering of conjugate designs within the
binary genetic algorithm. After the evaluation of the function f (xd, p̃a), the convergence criterion
is verified. If the optimal design is found, the optimization terminates, else the next design is
examined.

On the basis of the introduced coupling of the fuzzy analysis, the optimization algorithm and
the fracture mechanical analysis, the genetic algorithm learns the features of the uncertain crack
propagation and identifies the optimal configuration of the crack arresters.

6. Example

In the present example, the optimal geometrical configuration of crack arresters is determined
for a concrete panel with dimensions 50.8 x 30.32 [cm]. Thereby, the crack arresting function
is exhibited by the openings in the structure, e.g. the service pipes openings, which existence
is required anyway. The optimization aims at the identification of the location of four openings
χAi, i = 1, ..., 4, described by six design variables a, b, c, d, e, f as shown in Figure 6.

The crack arrester position vectors χAi are specified with respect to the coordinate system with
the origin in the reference point P. The considered design parameters are modelled as discrete
variables, compare Table I. The diameter D of all openings is defined by 1.27 [cm] and the
magnitude of the initial crack length is set to γin = 1.254 [cm]. In the model, a linear elastic
material characteristic is considered with the modulus of elasticity E = 38000 [MPa], Poisson’s
ratio ν = 0.18 and the fracture toughness Gc = 0.5 [N/mm].The crack initiation position θ̃cr1 is
considered as an uncertain parameter and modelled as a fuzzy triangular number, compare Figure 6
and Table I. In this example, the crack initiation is a consequence of a particular boundary change,
e.g. a removal of an additional support in the bottom of the panel, as depicted in Figure 6.

The fracture analysis is performed with a monotonic displacement based loading at constant
increments ∆dz = 0.01 [mm] on a statically determinate structure, which is obtained after the
removal of the additional support. In Figure 7, the crack propagation for the identified optimal
design at different stages of the loading and a particular crack initiation position is visualized. At
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Figure 6. Parametrization of the panel design.

the nodes of the finite element model, the material force vectors are marked, whereas the vector at
the crack tip defines the crack driving force.

The optimization accomplished by means of the binary genetic algorithm involves 20 generations
of the algorithm and the population size of 25 genomes. The fuzzy analysis is executed considering
the discretization of the fuzzy variable θ̃cr1 into two α-level sets at α = 0 Sα=0(θ̃cr1 ) and at α = 1

Sα=1(θ̃cr1 ). The evaluation of the α-level set Sα=0(θ̃cr1 ), enables to account for all possibly appearing
crack initiation locations. In addition, the proposed method permits to consider only the crack
initiation positions with highest possibility by the evaluation of the α-level sets Sα(θ̃cr1 ) with α ≈ 1.

Table I. Definition of the design variables and uncertain parame-
ters.

Design variables

interval increment unit

a [3.175, 8.255] ∆a = 2.54 [cm]

b [2.54, 5.08] ∆b = 1.27 [cm]

c [2.54, 5.08] ∆c = 1.27 [cm]

d [0.00, 10.16] ∆d = 2.54 [cm]

e [2.54, 27.94] ∆e = 5.08 [cm]

f [2.54, 10.16] ∆f = 2.54 [cm]

Fuzzy parameter

p̃a 1 = ˜θcr1 < 11.0; 16.0; 21.0 > [cm]
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a b) )

c) d)

Figure 7. Crack propagation at different stages of the computation a) − d), at applied deformation of 0.70, 0.76, 0.87
and 0.95 [mm] and the nodal material force vectors.

The α-level optimization is performed on the basis of the Monte Carlo simulation with 14 crack
initiation locations evaluated for every design. The aspired crack propagation curves are specified
as linear functions based on the points θ0

c and θnθc available for each considered crack initiation
point. The penalty function is defined as P = [dE (γcr j ; ζAi)]

3.
In Figure 8, the improvement of designs analyzed in subsequent optimization steps is visualized.

For the design evaluated in the initial optimization step, which is presented in Figure 8 a), the
disadvantageous configuration of the crack arresters implies that no crack propagation, i.e. no
realization of the fuzzy crack propagation curve can be hindered. The enhancement of the fail-
safe function is achieved for designs in Figure 8 b), c) analyzed in later optimization stages.
In the progress of optimization, the fail-safe optimal design is identified with the crack arrester
configuration limiting every crack growth determined by the fuzzy analysis. The optimal design,
visualied in Figure 8 d), is characterized by the design variables configuration a = 8.26, b = 3.81, c =
5.05, d = 0.00, e = 17.78, f = 5.08 [cm] and the corresponding crack arrester position vectors
χA1 = [17.78, 8.26] , χA2 = [17.78, 12.06] , χA3 = [17.78, 17.14] , χA4 = [22.86, 8.26] [cm]. The FE
models associated with the design configurations evaluated in the optimization are depicted in
Figure 8 as well. Thereby, FE models with only one of the considered crack initiation points are
visualized.
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Figure 8. Fuzzy crack propagation curve for designs in subsequent generations of the optimization algorithm.
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7. Conclusions

In the present contribution, a method for a fail-safe design optimization is presented, which is
numerically realized as a coupled approach of optimization, fuzzy analysis and fracture mechanical
analysis. For the investigations on safe failure, the uncertainties within the crack initiation and
growth process are analyzed. The modelling of nonstochastic properties of the uncertain crack
initiation position in a substructure belonging to the system of coupled substructures, succeeds by
the application of the fuzzy set theory and the possibility theory framework. By taking into account
the possibility of the occurrence of diverse crack propagation paths, the optimal configuration of
the crack arresters can be identified in a systematic way by means of the genetic algorithm based
design optimization procedure. The introduced approach enables the improvement of the prevention
from undesired crack growth and damage escalation as well as contributes to the enhancement of
structural durability and safety.
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158



Numerical Simulation of Wooden Structures

with Polymorphic Uncertainty in Material Properties

Ferenc Leichsenring, Wolfgang Graf and Michael Kaliske
Institute for Structural Analysis, TU Dresden, 01062 Dresden, Germany,

ferenc.leichsenring@tu-dresden.de

Abstract: Due to nature, uncertainties are inherently present in structural parameters such as
loadings, boundary conditions or resistance of structural materials. Especially material properties
and parameters of wood are strongly varying in consequence of growth and environmental condi-
tions. The considered uncertainties can be classified into aleatoric and epistemic uncertainty. To
include this variation in structural analysis, available data need to be modelled appropriately, e.g.
by means of probability and furthermore fuzzy probability based random variables or fuzzy sets.
Therefore, a limited empirical data basis for Norway spruce, obtained by experiments according
to DIN EN 408, is stochastically analysed including correlation, sensitivity analyses and statistical
tests. In order to comprehend uncertainties induced by estimating the distribution parameters,
the stochastic approach has been extended with fuzzy distribution parameters to fuzzy probability
based random variables according to (Möller and Beer, 2004; Möller et al., 2000). To cope with
epistemic uncertainties for e.g. geometric parameters of knotholes, fuzzy sets are used. The con-
sequence for wooden structures is determined by fuzzy stochastic analysis (Götz et al., 2015) in
combination with a FEM simulation using a model suitable for characteristics of a timber structure
by (Jenkel and Kaliske, 2014). The uncertain results (e.g. displacements, failure loads) constituted
by the proposed holistic approach – defining the material properties based on an empirical data
basis and the attempt of representing the uncertainties in material parameters and methods itself
– will be discussed in terms of further processing in engineering tasks.

Keywords: polymorphic uncertainty, fuzzy randomness, stochastic modelling, wood mechanics,
structural analysis

1. Introduction

Wooden structures underlie a fundamental data uncertainty in every engineering related matter.
The material parameters of wood are strongly varying due to the natural growth and environmental
conditions even within small pieces of wood. These aspects hold especially true for the material
parameters defined at a macroscopic level like the elasticity moduli and material strengths consid-
ered in this contribution. The reason for the variation at the macroscopic level might be found in
the anatomical structure of wood including the cellular level. To incorporate these characteristics,
wood can be described on the mesoscale including the growth layer dependent spatial variability of
material parameters, see e.g. (De Amicis et al., 2011), or even on a micro and nanoscale, see (De
Borst et al., 2013). However, the material parameters on the nano and microscale are naturally

c© 2016 by authors. Printed in Germany.
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varying themselves. Regarding the design of timber structures according to EN 1995 (2010), global
engineering material parameters are applied including further structural uncertainties e.g. in fibre
orientation and knot hole size as well as distribution. Despite those uncertainties, it becomes
necessary to assess the capabilities of a structure as well as characteristic variables for construction
and design purposes. Methods for consideration of uncertainties in design of timber structures by
means of randomness have been presented amongst others in (Fink and Köhler, 2014; Jenkel et al.,
2015; Köhler et al., 2007; Spaethe, 1992).

In general, uncertainty can be classified into aleatoric and epistemic uncertainty. The combina-
tion of both yields polymorphic uncertainty, see e.g. (Götz et al., 2015). The first type includes e.g.
the variations of material properties based on repetitive material tests. Due to a given amount of
test results, the uncertainties can be represented by means of randomness, which in general satisfies
statistical laws and possess a quasi objective information content. In this contribution, experiments
performed on small specimens made of Norway spruce according to European standards are used
as data basis. Epistemic uncertainties encounter non-statistical properties, information deficits and
subjective influences. According to (Möller and Beer, 2004), epistemic uncertainties are further
divisible into informal and lexical uncertainties. In this approach, geometric dimensions, knothole
sizes and positions are defined as fuzzy sets according to the fuzzy set theory of (Zadeh, 1965).

Especially for insufficiently large observations, a statistical evaluation free of doubt is hard to
constitute. Therefore, the use of fuzzy probability based random variables (fp-r), see (Götz et al.,
2015; Pannier, 2011; Pannier et al., 2013), is proposed in order to encounter the uncertainty within
the determination of stochastic parameters as well as representing the range of the response for
deterministic fundamental solution. To approximate solutions of FE simulations, and analytical
functions, artificial neural networks are hereby used as deterministic fundamental solution. To
evaluate polymorphic uncertainty with respect to a wooden structure, a fuzzy stochastic analysis
according to (Götz et al., 2015; Möller et al., 2007) is a valid approach, which yields to more realistic
but uncertain result quantities.

This contribution is divided into five main sections. Firstly, a brief overview of mathematical
fundamentals is given, regarding randomness, fuzziness and fuzzy randomness. The computational
analysis procedure is explained as well. Approaches to model fuzzy distribution parameters for
fuzzy probability based random variables are introduced. Hereafter, the data basis gathered from
multiple experiments is presented together with the appropriate fp-r variables. Subsequently, a
fuzzy stochastic analysis is applied on a wooden structure including knotholes.

2. Introduction of Uncertainty Models

The utilized uncertain structural analysis includes both, stochastic and fuzzy analysis. Therefore,
the mathematical basis for each concept of uncertainty is introduced including the description of
polymorphic uncertainty by means of fuzzy randomness.

REC 2016 - F. Leichsenring, W. Graf and M. Kaliske

160



Numerical Simulation of Wooden Structures with Polymorphic Uncertainty in Material Propertie

2.1. Uncertainty models

In order to derive a numerical model for an adequate consideration of uncertainty, it is proposed to
extend the common approach of stochastic modelling, used e.g. for material parameters, to fuzzy
probability based random variables. Therefore, the fundamentals of randomness, fuzziness, covering
epistemic uncertainty of e.g. geometric dimensions, and fuzzy probability based random variables
are hereafter introduced, to incorporate the source and nature of present uncertainties.

2.1.1. Randomness
A random variable X is defined by the mapping X : Σ→ R fulfilling the condition

∀I ∈ B(R) : X−1(I) := {ω ∈ Ω | X(ω) ∈ I} ∈ Σ , (1)

whereas Ω correspondents with the set of elementary events ω, Σ is a σ-Algebra and P is the
probability measure, satisfying the probability axioms of Kolmogorov. The observation space
is represented by (R,B(R)) including the Borel-σ-Algebra B(R). If X complies to the condition
Eq. (1), an associated probability measure PX is furthermore defined as

PX : B(R)→ [0, 1] : I 7→ PX(I) = P (X−1(I)) . (2)

The underlying distribution of the random variable X can be expressed by the cumulative distri-
bution function FX (cdf) and its derivative called probability density function fX (pdf) for which
holds

FX(x) =

∫ x

−∞
fX(t)dt . (3)

Based on the assumption that fX is continuous, the probability of an interval I = [xl, xr] is related
to FX as follows

PX(I) = FX(xr)− FX(xl) . (4)

The probability distribution of random variables is usually described by means of parametrized
distributions FX(x, θ). Common distribution types as the Normal or Log.-Normal distribution
will be further represented as parametric model with respect to suitable distribution parameters θ.

2.1.2. Fuzziness
Considering a precise set A ⊆ R, the characterizing function ξ(·), in terms of precise sets also called
indicator functions (Viertl, 1996), is defined by

ξA : R→ {0; 1}, x 7→:

{
1, x ∈ A
0, x /∈ A . (5)

Due to the imprecision of measurements, it becomes obvious that the definition of interval bound-
aries in this precise manner is a simple approach and not very realistic. Subsequently, the definition
of precise sets has been enhanced to non-precise sets. For reasons of distinction, the characterizing
function ξ(·) for non-precise data will be further expressed as membership function µ(·) allowing
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an assessment of the membership to an domain between [0, 1]. A fuzzy set Ã can be expressed as
set of ordered pairs

Ã = {(x, µÃ(x)) | x ∈ X,µÃ(x) ≥ 0} . (6)

To highlight the transformation from precise sets A to uncertain sets in R, fuzzy sets will be further
referred to as Ã. The fuzzy set Ã can also be referred to as a fuzzy number x̃, see (Möller and Beer,
2004). The membership function µ(·) of an uncertain variable is a real function of a real variable
with the following properties

µ : R→ [0, 1] , (7)

∃ x0 ∈ R : µ(x0) = 1 , (8)

Aα := {x ∈ R | µÃ(x) ≥ α} = [aα, bα] , (9)

where the finite closed interval Aα is called α-cut of µ(·) (Zadeh, 1971). The α-cut A0 is called
support of Ã. In this contribution, only convex fuzzy numbers according to (Möller and Beer,
2004; Pannier, 2011; Pannier et al., 2013) are considered. With respect to Eq. (9), all utilized fuzzy
numbers are represented as either fuzzy triangular number

x̃ = 〈a0, x0, b0〉 , (10)

or fuzzy trapezoidal interval number

x̃ = 〈a0, a1, b1, b0〉 . (11)

Both types of fuzzy numbers are illustrated in Fig. 1.

x
a    x      b0 0    0 a     a  b     b0 1    1 0

1

0

μ(x)

x

1

0

μ(x)

Figure 1. Fuzzy number x̃ as triangular and trapezoidal interval number.

2.1.3. Fuzzy randomness
The definition of fuzzy probability based random variables (fp-r) is founded on the assumption
that the probability distribution of a random variable X according to Eq. (2) cannot be described
exactly due to a lack of information, see e.g. (Götz et al., 2015; Pannier, 2011; Pannier et al., 2013).

Thus, a fuzzy probability distribution and a fuzzy probability space (Ω,Σ, P̂ ) can be introduced.

The fuzzy probability P̂ is represented as family of α-cuts

P̂ = (Pα)α∈(0;1] . (12)
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Each event A ∈ Σ is related by Pα to an interval [Pα,l(A);Pα,r(A)] for all α ∈ (0, 1] such that the
following condition is fulfilled

0 ≤ Pα,l(A) ≤ Pα,r(A) ≤ 1 . (13)

A fuzzy probability based random variable X is defined by the mapping of the fuzzy probability
space onto the observation space X : Ω→ R. The fuzzy probability distribution P̂X is formulated
as family of mappings P̂X = ((PX)α)α∈(0;1], with

(PX)α : B(R)→ {[l, r] | 0 ≤ l ≤ r ≤ 1} : (14)

I 7→ Pα(X−1(I)) = [Pα,l(X
−1(I)), Pα,r(X

−1(I))] . (15)

The fuzzy probability distribution might be represented by a fuzzy cumulative distribution function
F̂X , which is again defined as family of α-cuts

F̂X = ((FX)α)α∈(0,1] (16)

(FX)α = {G : R→ [0, 1] cdf | ∀x ∈ R : (17)

Pα,l
(
X−1((−∞, x])

)
≤ G(x) ≤ Pα,l

(
X−1((−∞, x])

)
} , (18)

with an arbitrary cumulative distribution function G(x). Each G ∈ FX is an original of F̂X .
The applied cumulative distribution function G is usually defined by distribution parameters θ
in terms of G(x, θ). Then, the fuzzy cumulative distribution function F̂X can be described with
fuzzy distribution parameters θ̃ = (θα)α∈(0,1]. For example, a two parametric distribution function
with parameters θ1 and θ2 yields

F̂X = ({Fθ1×θ2 | θ1 ∈ θ̃1,α, θ2 ∈ θ̃2,α})α∈(0,1] . (19)

This formulation is referred to as bunch parameter representation, since the fuzzy cumulative
distribution and the fuzzy probability density function can be considered as assessed bunches of
functions which are described by bunch parameters θ̃.

2.2. Uncertain structural analysis

According to (Möller and Beer, 2004; Pannier, 2011), the so-called fuzzy stochastic analysis type
I is utilized, in which the bunch parameter representation of fuzzy random variables is used. The
general workflow is constituted in a three-loop computational model.

Initially, each input parameter Xi with i = 1, . . . , n is represented by a fuzzy distribution accord-
ing to Eq. (19), where each distribution type is determined individually for each input dimension,
see Section 3. The fuzzy analysis, performed in the outer loop, implies the α-discretization. A crisp
space

θi,α = {θi ∈ θ̃i | µθ̃i(θi) ≥ α} ⊂ R2 (20)

is obtained for each α-level, carried out on θ̃i = (θ̃1,i×θ̃2,i). Evidently, every set of bunch parameters
θi is associated with a trajectory Fθi(x), see Fig. 2. In the inner loop of the computational model,
for each trajectory a stochastic analysis is performed, which concludes, in combination with a given
deterministic fundamental solution fZ : Rn → Rm, to an empirical distribution F̄j(z) for each
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142 4 Material inhomogeneities

stochastic analysis Type II is applied, where the fuzzy analysis is carried out within
the stochastic analysis. Subsequently, the fuzzy stochastic structural analysis Type I
utilized in this work is explained.

Figure 4.31: Fuzzy stochastic structural analysis Type I [105]

The fuzzy stochastic vector X = (X1, X2, . . . , Xn) ⊂ Rn containing n fuzzy random
input parameters is mapped onto m fuzzy stochastic results Z = (Z1, Z2, . . . , Zm) ⊂
Rm. Each input parameter Xi with i = 1, . . . , n is represented by its fuzzy cumulative
distribution and probability density function

F̂Xi =
({
Fθi | θi ∈

(
θ̃i

)
α

})
α∈(0,1]

f̂Xi =
({
fθi | θi ∈

(
θ̃i

)
α

})
α∈(0,1]

(4.69)

and the related bunch parameters θ̃i. The fuzzy bunch parameters θ̃i are discretized
by α-levels α ∈ (0, 1] as already shown in Fig. 4.21. For each α-level, a crisp space

θi,α =
{
θi ∈ θ̃i |µθ̃i (θi) ≥ α

}
⊂ Rnθi (4.70)

is obtained, whereas nθi represents the number of bunch parameters per input variable.
The membership function µθ̃i(θi) is determined according to Eq. 4.17 with θi = {θi,1×
θi,2 × . . .× θi,nθi}. From the deterministic space, a point can be picked containing a
deterministic set of bunch parameters θi ∈ θi,α, see Fig. 4.32. With this point, one
trajectory Fθi(x) is determined and a real random variable Xθi ∈ Xi is described.

Figure 4.32: Fuzzy stochastic structural analysis: α-level discretization of bunch parameters
and description of input variables by trajectories [105]

Figure 2. Trajectory regarding θα (Möller and Beer, 2004).

result set Zj with j = 1, . . . ,m. To map the results at the appropriate α-level, it becomes necessary
to condense the empirical distribution F̄ (z) to a representative scalar value σ. As information
reduction method, any descriptive statistical evaluation parameters such as standard deviation,
mean, median, quantiles etc. are conceivable for this task. In order to determine the bounds of
the associated α-level cut, a so-called α-level optimization (Möller et al., 2000) is necessary to
be carried for the computation of {σmin,α, σmax,α} as illustrated in Fig. 3. Conclusively, the fuzzy
result variable σ̃ is used to represent the uncertain results of the chosen information reduction
method. Therefore, the choice of method should be related to the problem under investigation and
considered in the final interpretation of the gained results.

Figure 3. Distribution of z, representation with two reduction measurements (Möller and Beer, 2004).

3. Data Modelling

Since the proposed procedure of uncertain analysis is founded on fp-r variables for material parame-
ters of wood, elements of statistics are necessary to determine stochastic parameters. Additionally,
two approaches for modelling fuzzy distribution parameters as either triangular or trapezoidal
interval numbers are introduced, whereas both methods base on the statistical evaluation of a
given dataset.
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3.1. Elements of mathematical statistics

To transform given test results into a distribution function, methods of inductive statistics are
necessary. There are four distribution types considered in this contribution all of which are two-
parametric such as FX(θ1, θ2). Beside the common Normal and Log.-Normal distribution, two
extreme value distributions, Gumbel and Weibull, are considered. Point estimators are used
to determine the distribution parameters. Methods of Moments (MoM) as well as Maximum-
Likelihood Estimation (MLE) apply for the most common point estimation procedures (Köhler
et al., 2007). The MoM is used since initial investigations revealed that especially for a small
sample size of data the more robust MoM is sufficiently accurate considering the general variance
within the data set itself.

The determination of a probability distribution function based on a given test results will be
shown for the elasticity modulus in tangential direction Et and is initially based on 45 test samples
Et. An examination with the boxplot detects potential outliers (1.5·inter quartile range), see (Frigge
et al., 1989). In order to determine the distribution parameters, the empirical mean value m̄(Et)
and empirical standard deviation σ̄(Et) will be used.

For a real-valued continuous functions f(x), the n-th moment is determined according to (Spaethe,
1992)

µn =

∫ ∞

−∞
(x− c)nf(x)dx . (21)

The mean value µ of f(x) is equal to the first moment (with c = 0) and the variance σ2 satisfies
the second moment if c = µ (central moment). The moments depending on the parameters θ1, θ2
can be expressed as

µ1 = g1(θ1, θ2)

µ2 = g2(θ1, θ2) . (22)

The MoM defines the empirical moments m̄, σ̄2 equal to the moments µ1, µ2 of true distribution
with the result that the equation system

m̄ = g1(θ̂1, θ̂2)

σ̄2 = g2(θ̂1, θ̂2) (23)

leads to the parameter estimations θ̂1, θ̂2 for θ1, θ2. For continuous functions, the estimators based
on the MoM fulfil the following properties, such as consistency

lim
n→∞

P (|θ̂ − θ| > ε) = 0 , ∀ ε > 0 , (24)

as well as being asymptotically unbiased

lim
n→∞

E(θ̂) = θ . (25)

To test the conformity of the empirical distribution with an assumed distribution type, two statisti-
cal tests are performed, see e.g. (Rinne, 2008; Viertl, 1997), the Kolmogorov-Smirnov test (KS)
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and the χ2-test with focus on the KS test due to the sample size of n∗ = 44. Both statistic tests
belong to the category ”Goodness of fit”, which determines how well an empirical distribution suits
a hypothetical distribution function. The KS test is based on the maximum difference between
an empirical and hypothetical cumulative distribution, with the given Kolmogorov-Smirnov
statistic for the null-hypothesis H0 : Fn(x) = F0(x) for a continuous probability distribution

Dn = sup
x
|Fn(x)− F0(x)| . (26)

The critical value of the maximum difference with respected to the significance level α is approxi-
mately (for n ≥ 35)

cα =

√
ln( 2

α)
√

2n∗
, (27)

hence the null hypothesis will be rejected if Dn > cα (Messay, 1951). Therefore, F0(x) can be as-
sumed as the underlying distribution function for the empirical distribution with a certain sureness
based on α, see Fig 4(b). The chosen criteria for rejecting the null hypothesis with the χ2-test is
the p-value χ2

p of the χ2-test statistic (Sellke et al., 2001). If χ2
p < α, the hypothetical distribution

is rejected.

Table I. Distribution parameters for Et.

Gumbel Log.-Normal Normal Weibull

KS (c0.05) 0.2047 0.2047 0.2047 0.2047

KS (Dn) 0.0862 0.0670 0.1412 0.1357

χ2 (p-value) 0.8364 0.8367 0.5893 0,5036

parameter 1 a = 0, 0356 µu = 5, 6886 µ = 297, 63 θ = 312, 90

parameter 2 b = 281, 45 σu = 0, 1203 σ = 35, 937 k = 9, 9617

As Table I shows, neither of the four distribution types is declined by both statistical tests, which
yields to the assumption that all of the distributions are valid approximations for the test samples.
Since the maximum absolute difference between the Log.-Normal distribution and the empirical
distribution is the lowest, a Log.-Normal distribution (σu, µu, see Tab. I) can be considered as
best fitting for Et. The four distribution types, represented by the probability density functions
(parameters see Tab. I) are shown in Fig. 4(a) with the relative frequencies of x ∈ Et. The small
positive skewness of the histogram might lead to the preference of the Gumbel and Log.-Normal
distributions by the statistical tests.

3.2. Principles of modelling the fuzzy probability based random variables

Since multiple admissible distributions exist to describe an empirical distribution, it is likely that
the chosen point estimators are not the most accurate way to determine the distribution parameters
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Figure 4. All admissible distributions for Et and the best fitting distribution within KS limits for α = 0.05.

with respect to the uncertainty in the data. To define the bunch parameters of any chosen two-
parametric fuzzy random based random variable

FX = ({Fθ1×θ2 | θ1 ∈ θ̃1,α, θ2 ∈ θ̃2,α})α∈(0,1] , (28)

for α = 0 and α = 1, one of the following methods is used. A common approach for α = 0 is based
on interval estimation of a parameter θ. Assuming θ can vary within a defined confidence interval
[ϑmin, ϑmax]

Pθ(ϑmin < θ < ϑmax) = (1− α) , (29)

a set of the minimum and maximum values of parameters, according to the confidence level (1−αs)
might be used describing a set of distribution functions, see e.g. (Viertl, 1997). According to Eq. (28)
and (29), the bounds of the support are defined as follows

θ0,l = ϑmin (30)

θ0,r = ϑmax . (31)

As described, one fuzzy parameter must hold {∃ ϑ0 ∈ θ̃ | µθ̃(ϑ0) = 1}. To obtain a so-called fuzzy
triangular number, point estimators such as MLE, MoM are appropriate to gain ϑ0. Therefore, the
uncertain parameter will be further expressed as

θ̃(·) = 〈ϑmin, ϑ0, ϑmax〉(·) . (32)

Considering any point estimation of stochastic parameters for an empirical distribution with low
sample sizes, it becomes obvious that this definition is accompanied by uncertainty as well. Con-
sequently, an alternative definition to the one previously propagated must be found for input
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dimensions with higher sensitivity relative to the investigated output dimension. Therefore, the
error made by the point estimation has to be taken into account. Under the assumption that an
admissible distribution type FX(θ1, θ2) fits the data set X, a sufficient amount of n > 106 samples

x̄ ∈ X̄, P (X̄) = FX(θ1, θ2) , (33)

should substitute the entire data set. To determine the deviation of the admissible parameter set
from the actual provided data, the variation of mean and standard deviation of an extended original
data set is computed with

X∗i = X ∪ {x̄i} ∀ x̄i ∈ X̄ , i = {1, . . . , n} , (34)

µi = E[X∗i ] , (35)

σi =
√

Var[X∗i ] . (36)

Hence, µµµ∗ = [µ1, . . . , µn] as well as σσσ∗ = [σ1, . . . , σn] are two data sets containing the deflections
of the first and second statistical moments. Concerning the longitudinal stiffness El, whereas the
Weibull distribution can be considered as admissible, the distribution of the extended mean values
(see Eq. (35)) is shown in Fig. 5(a). To evaluate the imprecision, the empirical quantiles µq5 and
µq95 are chosen. With the same empirical quantiles of σσσ∗ and the MoM, two parameter sets can be
obtained

MoM :

{
(µq5 , σq5) → (ϑ1,min1 , ϑ1,min2)
(µq95 , σq95) → (ϑ1,max1 , ϑ1,max2)

. (37)

Consequentially for each distribution parameter, a fuzzy trapezoidal interval number such as

θ̃(·) = 〈ϑmin, ϑ1,min, ϑ1,max, ϑmax〉(·) (38)

can be defined, whereas each α-cut A1 is bounded by the corresponding distribution parameters
in Eq. (37). The procedure is applied on material parameters of wood in Section 4. To observe the
convergence properties, the fitting of admissible distribution parameters is performed on increasing
samples size nS for an arbitrary data set. In Fig. 5(b), a normalized error

κ(·) =
(q(·) − E[µ∗])

E[µ∗]
(39)

in relation to nS is shown. Hence, based on the condition that for large nS an admissible function
exists, the following applies

lim
nS→∞+

κ(·) = 0 , (40)

as Fig. 5(b) illustrates. In terms of fuzzy numbers for stochastic parameters it yields ϑ1,min =
ϑ1,max = ϑ0, whereby the fuzzy trapezoidal interval is reduced to a fuzzy triangular number.
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Figure 5. Exemplary distribution of µµµ∗ (based on El) and convergence behaviour of κ(·) related to increasing nS .

4. Parameter Modelling and Data Basis

The introduced methods are applied to model the uncertainty of material parameters of wood
subsequently. The mechanical behaviour of the anisotropic material wood differs significantly in
the material directions radial r, tangential t and longitudinal l and strongly depends on the type
of loading like tension t, compression c and shear loading v. In the structural analyses presented
below, macroscopic material parameters taking into account these dependencies are utilized. The
material parameters and their uncertain distributions are modelled on the basis of empirical data.

4.1. Data base situation

The data base applied in this contribution has been obtained in experiments described in (Jenkel
et al., 2015; Ulrich and Seim, 2014). The investigated material parameters include the elasticity
moduli and the material strengths in the material directions and depending on the type of loading.
The tests have been carried out on small specimen, as far as possible free of inhomogeneities,
according to European and German standards given in Tab. II. In the table, the number of samples
(under consideration of outliers) as well as the empirical mean value m̄ and standard deviation σ̄
are given for each parameter. The total data sets are documented in (Jenkel et al., 2015; Ulrich
and Seim, 2014).

The experiments are designed to take all samples independently on the basis of identical con-
ditions (i.i.d. paradigm). For the parameters given in Tab. II, data sets should be obtained dis-
regarding the interaction to other parameters. Especially density and moisture, as most relevant
parameters influencing all material parameters of wood, should be blinded out. Thus, as far as
possible, specimen of comparable density are used. The moisture is conditioned in climate chambers.
To avoid size effects and obtain comparable parameters, identical specimen measures are applied
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for most of the test series. Specimen with equal material directions are used in each test series
considering all three material directions, except for the tensile strength perpendicular to grain.

Table II. Experimental basis according to (Jenkel et al., 2015; Ulrich and Seim, 2014).

parameter Er Et El ft,90 ft,l fc,r fc,t fc,l fv

standard DIN DIN DIN EN DIN DIN DIN DIN EN

52192 52192 52185 408 52188 52192 52192 52185 408

samples 41 44 28 30 30 45 45 30 30

m̄ [N/mm2] 656 298 17132 2.64 121.64 3.09 3.64 43.60 5.77

σ̄ [N/mm2] 107 36 2211 0.33 18.20 0.23 0.43 2.07 0.73

4.2. Data modelling

The available data is evaluated statistically to model the material parameters as fuzzy probability
based random variables. The best fitting distribution types for the data sets used in the exam-
ples presented below are given in Tab. III. Exemplarily, the longitudinal elasticity moduli El is
represented by means of a Weibull distribution

F̂El =
({
Fθ×k | θ ∈ θ̃α, k ∈ k̃α

})
α∈(0;1]

, (41)

whereas the distribution parameters are modelled as fuzzy trapezoidal interval numbers according
to Tab. III.The distribution is illustrated in Fig. 6. The black graphs in Fig. 6(a) are obtained using
the max- and min-sets of the space of bunch parameters defined at α = 1 marked by I and II in
Fig. 6(b). The light grey graphs are computed with α = 0 for the max- and min-sets of the bunch
parameters marked by III and IV.

5. Example

The methods presented above are used subsequently to compute the ultimate load of a timber board
containing knots at tensile loading are analysed under consideration of uncertainties in material and
geometrical parameters. The material parameters are modelled as fuzzy probability based random
variables (fp-r) while geometric parameters are described by fuzzy variables.

Knots in timber are remnants of branches in trees and can be considered as structural inhomo-
geneities. The size of knots and the boundary to the surrounding wood can often not be identified
exactly. Thus, the size of the knots is regarded as being uncertain and modelled by means of fuzzy
numbers. The board with dimensions t× b× l = 18× 150× 350mm is analysed at uniform tensile
loading as shown in Fig. 7. The aim is to compute the ultimate load. An FE analysis according
to (Jenkel and Kaliske, 2014) is applied to generate an artificial neural feed forward network, which
is used as deterministic fundamental solution fZ . Thereby, the knots and the surrounding wood are
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θ

Figure 6. Fuzzy probability based random variable El: (a) fuzzy probability density function f̂El and

(b) Cartesian product {θ̃ × k̃}.

Table III. Evaluation of experimental data (all data in [N/mm2]).

parameter distribution type fuzzy distribution parameters

El Weibull θ̃ = 〈17256, 17790, 18326, 18785〉
k̃ = 〈7.529, 9.283, 10.99, 13.83〉

ft,90 Weibull θ̃ = 〈2.6627, 2.7771, 2.8879〉
k̃ = 〈7.7578, 9.7439, 13.5851〉

ft,l Normal µ̃ = 〈114.45, 121.11, 125.37, 132.02〉
σ̃ = 〈14.491, 18.134, 21.248, 27.354〉

fc,r Gumbel ã = 〈2.9097, 2.9687, 3.0375〉
b̃ = 〈4.9700, 5.9334, 7.7054〉

fc,l Log.-Normal µ̃u = 〈3.7554, 3.7737, 3.7917〉
σ̃u = 〈0.0395, 0.0491, 0.0559〉

fv Log.-Normal µ̃u = 〈1.6979, 1.7439, 1.7829〉
σ̃u = 〈0.0931, 0.1259, 0.1553〉

not distinguished by element edges, but by means of integration points. This smeared FE model
is feasible since an individual coordinate system and material parameters can be assigned to every
integration point of each finite element, compare (Zohdi and Wriggers, 2005). The board is simply
discretized by a regular mesh with 2 × 12 × 30 hexahedral 8-node finite elements, see Fig. 7. To
improve the approximation of knots, three integration points are used in each direction per element.
Due to the indirect representation of knots in the FE model, a fixed regular mesh can be applied
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Figure 7. Original geometrical model and FE model with fuzzy sized knots due to fuzzy knot diameter d̃i.

in the uncertain analysis. Otherwise, a new mesh would need to be generated for each solution step
due to changing knot size.

The board analysed here is experimentally investigated in (Stübi, 2001), whereas the knots are
documented in size and position on the board surfaces. The procedure how to derive a geometrical
model as shown in Fig. 7 from these measurements is presented in (Jenkel and Kaliske, 2014). For
the given example, the knots are described as cylinders passing the board in different angles. The
board contains 4 knots i = {1, 2, 3, 4}. The original knot diameters d0,i taken from (Jenkel and
Kaliske, 2014; Stübi, 2001) are varied in-between ±10%. Thus, four fuzzy knot diameters

d̃i = f̃d,i · d0,i, i = {1, 2, 3, 4} (42)

are introduced using fuzzy triangular numbers f̃d,i = 〈0.9, 1.0, 1.1〉 as knot factors, see Fig. 7.
Before the structural analysis is carried out, a material coordinate system representing the three

material directions r, t and l needs to be assigned to every integration point. In general, the
longitudinal direction is defined by the stem direction, the tangential direction by the growth rings
and the radial direction by the medullary rays pointing to pith. In the area of branches, the fibre
course, i.e. the longitudinal direction, is deviating from the stem direction. Therefore, the fibre
course is computed by means of a streamline approach presented in (Jenkel and Kaliske, 2014)
based on a flow-grain analogy. Since the knot diameters are varied, this computation has to be
carried out for every solution step within the fuzzy stochastic structural analysis.

The ultimate load pu is computed using a Tsai-Wu plasticity formulation with linear isotropic
softening, see e.g. (Schmidt and Kaliske, 2009; Tsai and Wu, 1971). In the simulations, the load p
is increased by small increments. If the total cross-section in an arbitrary region of the board is in
the plastic regime, the load will decrease. The ultimate load is determined as maximum loading in
the computed load-displacement dependencies pu = max(p).
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The material parameters are modelled based on the empirical data described above. In the
applied elasto-plastic material model, the 9 material parameters described in Tab. II (El, Er, Et,
fc,r, fc,t, fc,l, ft,90, ft,l and fv) are utilized. In addition, the shear moduli, Poisson’s ratios and the
rolling shear strength are needed. Since these parameters are not investigated in the experiments,
deterministic standard values are chosen in terms of νrt = 0.24, νtl = νrl = 0.45 and Grt =
80N/mm2, Gtl = Grl = 800N/mm2 and fv,rt = 0.1 · m̄fv for all simulations.

Two configurations are considered, whereas the knots are modelled as holes (ktype = 1) and as
being filled and fully connected to the surrounding wood (ktype = 2). If ktype = 1, the knot holes
are approximated in the regular mesh using 1% of the values of the material parameters applied for
the surrounding wood. If ktype = 2, the same material parameters as for the surrounding wood are
applied for the integration points inside the knots, but with material coordinate systems defined by
the longitudinal branch axes. The influence of the 9 material parameters and the four knot factors
has been investigated on the basis of a Design of Experiments (DoE) for both configurations, ktype =
1 and ktype = 2. Beside the ultimate load pu, the displacement uz(pu) at the point of maximum
load, obtained as mean value of the displacements in z-direction of all loaded nodes, is regarded as
result quantity. The results are evaluated in sensitivity analyses using Sobol indices (Sobol, 2001).
In Fig. 8, the sensitivity measures of all input quantities are given.

The outcomes are similar for both knot configurations. The ultimate load pu is influenced mostly
by ft,l and fv. The displacement at the point of ultimate load uz(pu) is affected by El, ft,l, fv and
slightly ft,90. The influence of the knot factors seems to be rather small. The effects of the different
factors might neutralize if one knot becomes larger while the other gets smaller. If ktype = 2, the
knots have larger influence, probably due to their load bearing capacity. The Sobol indices of the
particular knot factors correspond to the original knot size. As a consequence of the sensitivity

Figure 8. Sensitivity measures S of all input variables regarding the result values pu and uz(pu).

analysis, the longitudinal elasticity modulus El, the tensile strength perpendicular to grain ft,90,
the longitudinal tensile strength ft,l and the shear strength fv are modelled as fuzzy probability
based random variables using the best fitting distribution types identified in Tab. III. All other
material parameters are modelled deterministically by their mean values according to Tab. II. A
Weibull distribution is used to represent El, see Fig. 6. For ft,l, a Normal distribution fits best
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to the empirical data. Since these material parameters appear to be most relevant, the distribution
parameters are described by means of fuzzy trapezoidal interval numbers, see Tab. III.

For each configuration (ktype = 1, 2), the ultimate load pu is computed as fuzzy stochastic result
quantity. Quantiles q̄i are chosen to represent the uncertain distribution of pu here. The α-level
optimization is carried out on α-levels α = {0, 16 , 13 , 12 , 23 , 56 , 1} regarding q̄1, q̄5, q̄25, q̄50, q̄75, q̄95 and
q̄99. The results of the simulation with ktype = 1 are illustrated in Fig. 9. The uncertain ultimate
load pu computed using ktype = 2 is depicted in Fig. 10.

Figure 9. Uncertain distribution of pu represented by fuzzy quantiles ˜̄qi for ktype = 1.

Figure 10. Uncertain distribution of pu represented by fuzzy quantiles ˜̄qi for ktype = 2.

In both figures, the fuzzy numbers for the particular quantiles ˜̄qi with i = {1, 5, 25, 50, 75, 95, 99}
are depicted in 3D views. The black circles mark the bounds of each fuzzy number on each α-level.
All fuzzy quantiles are obtained as kind of fuzzy trapezoidal interval numbers. In addition, a top
view is given. The black lines represent the plateaus of the fuzzy trapezoidal interval numbers while
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the grey lines represent the support. As can be seen in the top views, the uncertain distribution
function of pu is approximated by the quantiles.

For ktype = 1, smaller ultimate loads are computed as for ktype = 2, which is reasonable due
to the load bearing capacity of the knots. The membership functions of the fuzzy quantiles are
similarly shaped for both configurations. The range of the intervals computed for each quantile
on each α-level is comparable for ktype = 1 and ktype = 2. Moreover, the uncertain distributions
according to the top views in Figs. 9 and 10 are very similar, except that the distribution for
ktype = 2 seems to be shifted to the right about 2-3 N/mm2.

In this example, methods for the consideration of material and structural inhomogeneities are
applied jointly revealing the advantages of the introduced uncertainty models. The results given in
Figs. 9 and 10 include information, which could not have been achieved by application of a pure
stochastic analysis.

6. Conclusion and Outlook

The uncertainty of material and structural parameters has manifold reasons. If the uncertainty of
input parameters shall be considered realistically in a structural analysis, appropriate data models
are needed. In this contribution, a general description with polymorphic uncertainty is utilized
and further classified into aleatoric and epistemic uncertainty. The first type is described using
randomness while the latter is represented by means of fuzziness. The combination of both yields
fuzzy randomness which is ideally suited to describe the uncertainty of material parameters of wood.
Although the natural variability of material parameters is identified with aleatoric uncertainty, an
application of randomness is often not feasible due to the limitations of available data bases.

Methods to model empirical data by fuzzy randomness with focus on fuzzy probability based ran-
dom variables are introduced. The procedure is applied to describe the uncertainty of macroscopic
material parameters of wood. In addition, the uncertainty of geometrical and further structural
parameters is represented using fuzzy variables. The procedure of a fuzzy stochastic structural
analysis is described theoretically and demonstrated by an examples. In the structural analyses
of wooden structures, information is considered which could not have been included in stochastic
analyses nor a single deterministic structural analysis.

According to EN 1990 (2010), a semi-probabilistic safety concept is proposed for the future
determination of partial safety factors. A stochastic analysis procedure as special case of the
introduced methods can be used for the calibration of safety factors in a partial factor design
concept. A failure probability might be prescribed, which is used to determine deterministic design
values from the uncertain input parameters and results. These values simply need to be related to
the characteristic values to define partial safety factors.

Although the uncertainty models fuzziness and fuzzy randomness are established in science, an
application for the purpose of standardization seems improbable in short term. Actually, engineers
demand a further simplification of the design rules instead of a wider range of methods (Seim
et al., 2012). However, the evaluation of the uncertain results can give an additional input for the
determination of less conservative safety factors and a better utilization of the load bearing capacity
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of timber structures. Future work is necessary to get from the fuzzy stochastic structural analysis
presented here to recommendations for a numerical design concept.

In uncertain structural analyses, uncertain results are computed containing all information pro-
vided due to the uncertain input parameters. Engineers require deterministic values to determine
a structural design. Measures of central tendency as mean value and measures of dispersion as
quantiles can be used to reduce the information of uncertain variables to deterministic values.
Similar measures have been used in the fuzzy stochastic structural analysis to describe the uncertain
distributions of the results. Due to the application of fuzzy randomness, the mean values and quan-
tiles are obtained as uncertain quantities, which might need to be simplified themselves. Information
reducing measures for fuzzy numbers are introduced e.g. in (Beer and Liebscher, 2008; Graf et al.,
2009).

In this contribution, the idea is not to reduce the uncertainty but keep as much information
as possible. If all available data are considered in the structural analyses, the influence of the
uncertainty of the input parameters on the structural results can be evaluated. Engineers can obtain
indication which input parameters deserve closer attention and might be modified to improve a
structural design. Therefore, robustness analyses, such as in (Beer and Liebscher, 2008; Graf et al.,
2009), and sensitivity analysis, see e.g. (Pannier and Graf, 2015), are powerful tools. Moreover,
the procedures presented in this contribution can be used in structural optimization approaches as
introduced in (Götz et al., 2015).
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Abstract: This paper deals with the analysis of truss structures with uncertain elastic modulus under 
deterministic loads. The uncertain parameters, which characterize the elastic modulus, are determined by 
examining the experimental data obtained from tensile tests on several steel bars performed in the 
Laboratory of Structures and Materials of the Department of Engineering (University of Messina). 
Analyzing the experimental data, both the probabilistic and non-probabilistic models are examined. In the 
first case the random uncertainties are completely characterized through the knowledge of the probability 
density function, which is determined by applying the maximum entropy approach and compared with 
Gaussian model. In the second case the interval model is adopted and the uncertainties are characterized by 
the midpoint and deviation values. Finally, in order to compare the propagation of these two models of 
uncertainties, the response of a benchmark truss structure is evaluated and the results in terms of 
displacements are compared. 

Keywords: probabilistic uncertainties, maximum entropy approach, interval analysis, rational series 
expansion 

 

1. Introduction 
 
In recent years it has been recognized that the analysis of structural systems should take into account all the 
relevant uncertainties present in the analyzed problem. Uncertainties associated with an engineering 
problem, due to the different sources, can be divided into two main groups: random uncertainties and 
epistemic uncertainties (Elishakoff and Ohsaki, 2010). The random uncertainties are completely 
characterized through the knowledge of the full set of its statistics (which could be moments, cumulants or 
other derived quantities) or, which is the same, through the knowledge of its probability density function 
(PDF). Despite their success, unfortunately the probabilistic approaches give reliable results only when 
sufficient experimental data are available to define the PDF of the fluctuating properties. If available 
information are fragmentary or incomplete so that only bounds on the magnitude of the uncertain structural 
parameters are known, non-probabilistic approaches can be alternatively applied. In the framework of non-
probabilistic approaches the interval model, which stems from interval analysis (see e.g. Moore, 1966; 
Moore et al., 2009), may be considered as the most widely used analytical tool among non-probabilistic 
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methods (Muhanna and Mullen, 2001; Moens and Vandepitte, 2005). According to this approach, the 
fluctuating structural parameters are treated as interval numbers inside their lower and upper bounds.  

In the framework of probabilistic approaches usually the uncertainties are assumed as stochastic 
variables modelled by Gaussian distributions. However, often, this distribution does not reflect the actual 
one. As a consequence the numerical results obtained by assuming the Gaussian approximations could be 
very far from the effective ones. On the contrary in this paper, starting from data obtained from experiments 
on several steel bars performed in the Laboratory of Structures and Materials of the Department of 
Engineering (University of Messina), the PDF of elastic modulus of the material is derived by applying the 
maximum entropy approach proposed by Alibrandi and Ricciardi (2008). Then the probabilistic response of 
a benchmark truss structures is determined once the inverse of the global stochastic stiffness matrix is 
evaluated in approximate explicit closed form by applying the recently proposed Rational Series Expansion 
(RSE) (Muscolino and Sofi, 2013; Muscolino et al., 2014). So operating a substantial computational savings 
over classical Monte Carlo Simulation (MCS) is obtained.  

In the framework of interval analysis the midpoint and deviation values of the uncertain elastic modulus 
are determined by analyzing experimental data. Then, approximate explicit expressions of the bounds of the 
interval nodal displacements of the benchmark truss structures are derived by applying the so-called 
Interval Rational Series Expansion (IRSE) (Muscolino and Sofi, 2013; Muscolino et al., 2014) recently 
proposed to evaluate the explicit inverse of the global stiffness matrix with interval modifications. 

 
 

2. Preliminary concepts and definitions 
 
2.1. EQUATIONS GOVERNING THE PROBLEM OF TRUSS STRUCTURES  

It is well known that the equilibrium equations of a truss structure with n unconstrained nodal 
displacements and m elements, subjected to known static loads, can be written as follows: 

;       equilibrium equation;
;       constitutive equation;

.       compatibility equation.

TC Q = f
Q = R q
C U = q

 (1a,b,c) 

where U  is the is the vector, of order n , of nodal displacements; f  is the vector, of order n , collecting 
the external loads applied at the nodes; Q and q  are the vectors , of order m , of internal forces and 
deformations respectively; TC  is the n m  equilibrium matrix and R  is the m m  diagonal internal 
stiffness matrix. Let us now indicate with j j j jE A L   the axial stiffness of the j-th element, where jE , 

jA  and jL  are the Young elastic modulus, the area and the length of the j-th element, respectively. Let us 
assume now that r m  elements possess uncertain elastic modulus. Denoting with j the dimensionless 
fluctuation of the j-th uncertain elastic modulus around the nominal value, 0, jE , of the j-th element, such 

that  0, 1j j jE E   , one gets: 
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 0, 0,1 (1 )j j j j j j jE A L       (2) 

where 0, 0,j j j jE A L  is the nominal value of the axial stiffness of the j-thelement with 1,2, ,j r m 1,2, ,j r m1,2, ,j r m1,2, ,j r m j r m1,2, ,j r m1,2, , 1,2, ,j r m1,2, , .
Then, the internal stiffness matrix ( )R α can be written as: 

0 , ,
1

( ) = + , 
r

T
j E j E j

j




R α R l l (3) 

where α is the vector collecting the r uncertain dimensionless fluctuations j , 0R is the diagonal nominal 

internal stiffness matrix and ,E jl is a vector of order n with only the j-th element equal to 0, j and the 

other ones equal to zero. Notice that the dyadic product , ,
T

E j E jl l gives a change of rank one to the nominal 
internal stiffness matrix. After simple substitutions into Eqs. (1) the solving equilibrium equation, in the 
framework of the displacement method, can be written as: 

( ) ( ) K α U α f (4) 

where ( )U α is the vector, of order n , of the unknown nodal displacement depending on uncertainties and 
( )K α is the uncertain stiffness matrix which, by means of Eqs. (1), can be written as:

( ) ( )TK α C R α C (5) 

Then, according to Eq. (3), the stiffness matrix ( )K α , which possesses r uncertain parameters. can be 
rewritten as:  

 0 0
1

( )
r

j j
j




    K α K K K K α (6) 

where 0K is the nominal stiffness matrix and jK is a rank-one matrix defined respectively as: 

0 0 ;T T
j j j K C R C K v v (7a,b) 

with the vector jv given as:  

,
T

j E jv C l (8) 

Finally, the solution of Eq. (4) can be formally written as: 
1( ) ( )U α K α f (9) 

Because of the presence in Eq. (9) of the vector α , collecting the uncertain dimensionless fluctuations
j , the solution of previous equation can be obtained efficiently if explicit expressions of the inverse of the 

random stiffness matrix ( )K α are known. To do this, in the next subsection a new series expansion is 
described.
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2.2. EXPLICIT INVERSE OF THE STIFFNESS MATRIX FOR STRUCTURAL SYSTEM WITH RANK-ONE 
MODIFICATIONS  

In order to derive the explicit expression of the inverse of the stiffness matrix, in this section a recently 
proposed series expansion, called Rational Series Expansion (RSE), is described (Muscolino and Sofi, 
2013; Muscolino et al., 2014). The RSE has been obtained by properly modifying the Neumann series 
expansion in the case of structural systems with more rank-one modifications in the stiffness matrix. So 
operating an approximate explicit expression of the inverse of an invertible matrix with r modifications was 
derived. In particular, for truss structures, the matrix  K α , which collects the rank-r change in the 
stiffness matrix, can be written as the superposition of r rank-one matrices as follows: 

 
1

r
T

i i i
i




 K α v v (10)

where the vector iv has been defined in Eq. (8). Moreover, since the fluctuating dimensionless 
uncertainties are lesser than one, that is 1s 1 , it is possible to evaluate in explicit form the approximate 
inverse of stiffness matrix by retaining only the first order term as follows: 

 
1

1 1
0 0

1 1 1+

r r
T i

i i i i
i i i id








 

 

 
    
 

 K α K v  v K D (11) 

where the following quantities have been introduced: 
1 1 1

0 0 0;T T
i i i i i id    v K v D K v  v K . (12a,b) 

Notice that Eq. (11) certainly holds if the following condition is satisfied:  

 <1.i id               (13)

2.3. EXPLICIT MEAN-VALUE VECTOR AND COVARIANCE MATRIX FOR STOCHASTIC UNCERTAINTIES 

This section addresses the problem of static analysis of structures in which the uncertainties are modelled as 
zero-mean stochastic independent variables ii , with assigned Probability Density Function (PDF) ( )

i
p x ( )

i
p x( )p x( )

i
p x

i
p xp x ,

collected in the vector αα . In this case the solution of equilibrium equations depend on stochastic variables, 
that is: 

    K α U α f   α U α f   α U α f    α U α f (14)

where the tilde denotes a stochastic quantity. By applying Eq. (11), the inverse of the stochastic matrix 
 K α  α  can be evaluated as: 

 
1

1 1
0 0

1 1 1+

r r
T i

i i i i
i i i id








 

 

 
    
 

 K α K v  v K Di D
r r
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where 0K is the stiffness matrix of the nominal system while and i id D have been defined in Eq. (12).

Accordingly, the solution of the set of linear stochastic Eq. (14) can be written in the following 
approximate explicit form:

   
1 1

0
1 1+

r
i

i
i i id





 



   U α U K α f K f D fi D f   
1 1

    0      α U K α f K f   α U K α f K f
1

α U K α f K f
1 1

α U K α f K f
1

α U K α f K f


α U K α f K f0α U K α f K f0   α U K α f K f   0   0α U K α f K f0   0         α U K α f K f            


   α U K α f K f   α U K α f K f   α U K α f K f   α U K α f K f      α U K α f K f            α U K α f K f          i
i idi idi i

D fiD fi
i D f (16) 

Finally, since zero-mean stochastic variables ii are realistically assumed independent ones, the mean-
value vector and the covariance matrix of the stochastic response vector UU can be evaluated, respectively, 
as follows: 
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where E  is the stochastic operator defined as: 
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Obviously, if the stochastic variable is defined in a finite interval  ,a b the previous relationships can be 
rewritten as:
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The previous equations provide substantial computational savings over classical MCS method since they 
just involve the statistics of the random variables  1+i i id   1+ i  i i  d  i i d i i       1+   1+ i i without requiring the inversion of the 
global stochastic stiffness matrix. Furthermore, the closed-form expression of the random response in Eq. 
(16) enables one to evaluate higher-order statistical moments useful to determine the PDF of the response.  

2.4. EXPLICIT BOUNDS OF THE RESPONSE FOR INTERVAL UNCERTAINTIES

Let us consider now the case in which the uncertainties are modelled with uncertain-but-bounded 
parameters modeled as interval variables. According to interval analysis, the vector α , of order r, in this 
case has to be defined as:  , α α α . In the following with the apex I is denoted an interval quantity. The 
vector Iα , collects the r uncertain-but-bounded symmetric fluctuations of axial stiffness around their 
nominal value and defines a r-dimension bounded convex set-interval vector of real numbers, such that 
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 α α α whose i-th element is i
 . Without loss of generality it is assumed the midpoint value vector, 0α ,

equals to 0. Then the deviation amplitude vector, α , which collect the fluctuations around the midpoint is 
given as: 

 0
1
2

      α 0 α α α α α (20a,b)

where the symbols α and α denote the lower and upper bound vectors respectively. As a consequence of 
Eqs. (20), the following relationship holds for the generic interval variable

ˆI
i i ie   (21) 

where    ˆ 1, 1 1,2, ,I
ie i r    1, 1 1,2, , 1, 1 1,2, ,      1, 1 1,2, ,   1, 1 1,2, , 1, 1 1,2, ,     1, 1 1,2, ,  is the so-called Extra Unitary Interval (EUI) (Muscolino and Sofi, 2012; 

Muscolino and Sofi, 2013).  

For deterministic static loads and uncertain-but-bounded parameters, the equilibrium Eq. (5) can be 
rewritten as: 

( ) ( )I I K u f  (22) 

It follows that the stiffness matrix ( )IK  , depends only on deviation amplitude value of the r uncertain-
but-bounded parameters and according to interval formalism is written as: 

  0 0
1 1

ˆ ˆ
r r

I I T I
i i i i i i

i i
e e

 

      K K v v K K (23) 

where: 
T

i i i i K = v v (24) 

The goal is now to find the narrowest interval Iu containing all possible response vectors u , satisfying 
the equilibrium Eq. (22), when the vector α assumes all possible values inside the interval vector Iα . The 
problem is formally solved as: 

  
1I I 

u K α f (25) 

Since in structural engineering the stiffness matrix is regular and it can be assumed that the uncertainties 
are not large, so that 1i i i 1 1 , the inverse interval of the stiffness matrix, by applying the Improved 
Interval Analysis (Muscolino and Sofi, 2012), can be determined by the applying so called Interval Rational 
Series Expansion (IRSE) (Muscolino and Sofi, 2013; Muscolino and al., 2014) as (see Eq. (11)):

 
1

1 1
0 0

1 1

ˆˆ
ˆ1

Ir r
I I T i i

i i i i iI
i i i i i

ee
e d











 

 
     

  
 K α K v  v K D (26) 
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Obviously, the accuracy of Eq. (26), which gives the explicit inverse of a matrix with r fluctuating 
parameters, depends on the magnitude of the fluctuations i . Alternatively, Eq. (26) can be rewritten in 
the so-called affine form (Muscolino and Sofi, 2013) as:

   
1

1 1
0 0 0,

1 1

ˆ ˆ
r r

I I T I
i i i i i i i i

i i
e a a e






 

 
       
 

 K α K v  v K D (27) 

where 0, ia and ia are given by: 

 

   

2

0, 2 20; 0.
1 1

i i i
i i

i i i i

d
a a

d d
 

 

 
    

   
(28a,b) 

Then the solution of Eq. (22) is given respectively as:

   
1 1

0 0,
1

ˆ
r

I I I
i i i i

i
a a e






    u K α f K f D f (29) 

Due to the monotonicity of the components of the vector ( )Iu α with respect to the generic i , the 
lower and upper bounds of displacements can be evaluated respectively as:  

0 0;        u u u u u u (30a,b)

where the following vectors are introduced: 

1
0 0 0,

1 1
;    

r r

i i i i
i i

a a

 

     u K f D f u D f (31a,b) 

with the symbol  which denotes the component wise  absolute value.

3. Probability density function derived by experimental data 

In the framework of structural engineering usually the uncertainties are assumed as stochastic variables 
modelled by Gaussian distributions. However, often, this distribution does not reflect the actual one. As a 
consequence the numerical results obtained by assuming the Gaussian approximations could be very far 
from the effective ones. To overcome this drawback, in this section, a method to derive the distribution 
coherent in some way with the histogram obtained analysing the results of a set of experimental data is 
presented. The method is based on the maximum entropy principle proposed by Alibrandi and Ricciardi 
(2008), which derived the effective PDF coherent with experimental data in terms of moments.  

Let denote with  ˆ Xp x Xp x p x Xp xX the approximating PDF of the given random variable XX , defined in a finite 
interval  ,a b , which can be written as superposition of basis PDF  ( ) ; ,i

i iX x x h  ( )  ; , ( )i( )
X  x x h  ; , x x h ; ,  : 

   ( )

1

ˆ ; ,
N

i
i i iX X

i
p x p x x h



      i i   X X   X X      i   X X   i      p x p x x h      ( )   p x p x x h   ( )      ; ,   p x p x x h   ; ,      ( )   i   ( )   p x p x x h   ( )   i   ( )      i   p x p x x h   i      i i   p x p x x h   i i      ; ,   i i   ; ,   p x p x x h   ; ,   i i   ; ,      X X   p x p x x h   X X      i   X X   i   p x p x x h   i   X X   i   p x p x x h   p x p x x h   X Xp x p x x hX X   X X   p x p x x h   X X      X X      X X      p x p x x h      p x p x x h      X X   p x p x x h   X X      X X   p x p x x h   X X      p x p x x h      p x p x x h            X X      X X      p x p x x h      p x p x x h      X X   p x p x x h   X X      X X   p x p x x h   X X               (32) 
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where the i-th basis PDF  ( ) ; ,i
i iX x x h  ( )  ; , ( )i( )

X  x x h  ; , x x h ; ,  , having unitary area in the interval domain [ , ]a b , depends on the 
location xi and bandwidth hi. The location parameters are N points belonging to the domain [ , ]a b , chosen 
for sake of simplicity with a constant step 1i ix x x   , (with 1,2, , 1i N 1,2, , 11,2, , 1i N1,2, , 11,2, , 1 1,2, , 11,2, , 1i N1,2, , 1 1,2, , 1i N1,2, , 1). In a similar way it has 
been assumed a constant bandwidth parameter ih h q x   , a good choice is 2 3q  .

The superposition of basis PDF (Eq. (32)) represents a PDF if and only if the coefficients ip satisfy the 
following conditions: 

1

0 1,     1

1                     

i
N

i
i

p i N

p


  







p i N
(33) 

Equations (32) and (33) show that a generic PDF can be expressed as a linear convex combination of 
simpler PDFs, whose coefficients have the meaning of probabilities. In order to evaluate the probabilities 

ip , it is useful to rewrite Eq. (32) as follows: 

   ˆ T
X Xp x x φ p      T   X X   X X   p x x   p x x   X Xp x xX X   X X   p x x   X X      p x x      p x x   φ p   φ p      T   φ p   T      p x x   φ p   p x x      X X   p x x   X X   φ p   X X   p x x   X X    (34) 

where        (1) (2) ( )
1 2; , , ; , , , ; ,T N
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Np p pp   N  p p p  , , , p p p , , ,  are vectors of 

order N. Multiplying both sides of Eq. (34) by kx (with 0,1,2, ,k M 0,1,2, ,k M0,1,2, ,k M0,1,2, , ). and integrating over the domain, 
taking into account Eqs. (33), the following system of equations is obtained: 

1 



T1 p
Mp = μ

(35a,b) 

where 1 is a unit vector of order N, M is a matrix of order M N , whose elements, kim , are the moments 
of order k of the i-th basis PDF  ( ) ; ,i

i iX x x h  ( )  ; , ( )i( )
X  x x h  ; , x x h ; ,  : 

 ( ) ; , d
b k i

ki i iXa
m x x x h x    ; , d Xm x x x h x m x x x h x ( )m x x x h x( )  ; , d m x x x h x ; , d ( )k i( )m x x x h x( )k i( )

Xm x x x h xX (36) 

while μ  is a vector of order M collecting the k-th moment derived from experimental data. In the system of 
equations (Eq. (35)) the number of moments M gives the data information. Here it is assumed that only the 
lower six moments ( 6M  ) can be derived with good accuracy from experimental data. 

The number N of kernel densities gives the resolution for the recovery of the target PDF  Xp x Xp x p x Xp xX ; as 
much as N increases, computational complexity grows; it’s a good choice to select N in the range 20-100, 
being generally N lower than the Ns sample data. 

To solve the system (Eq. (35)) the Maximum Entropy method is adopted, that leads to find the unique 
minimum of the free functional  1 2, , ,ME

MH H      , , ,  M      , , ,    , , ,  M    M  , where λi is the i-th Lagrange multiplier, defined 
as (Alibrandi and Ricciardi, 2008): 
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(38) 

is the normalization constant, that can be expressed as a function of λ1,λ2,., λM, and 
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M    , , ,    , , , M    M                (39) 

The free function  1 2, , ,ME
MH H      , , ,  M      , , ,    , , ,  M    M  is convex with respect to the Lagrange multipliers 

1 2, , , M  , , , M  , , ,  , , , M  M and, as a consequence, it has an unique minimum , which can be obtained through a standard 
convex optimization algorithm, with a limited number of iterations. 

The corresponding coefficients ip can be computed as: 

0
1

exp
M

k
i k i

k
p x 



 
    

 
      (40) 

where the Lagrange multipliers are solution of the Maximum Entropy optimization problem (Alibrandi and 
Ricciardi, 2008). 

4. Numerical results versus experimental data 

Aim of this study is to perform the analysis of truss structures with uncertain Young elastic modulus 
under deterministic loads by applying both probabilistic and non-probabilistic approaches. To do this the 
Young elastic modulus is determined by several experiments on steel bars performed in the Laboratory of 
Structures and Materials of the Department of Engineering (University of Messina). Tensile strength tests, 
according to UNI EN ISO 15630-1, were performed on 128 specimens, using universal machine, Galdabini 
VB47, Quasar 1200 and elastic modulus was computed by electronic extensometer micron motor (class 0.5 
according to UNI EN ISO 9513). The main statistics of experimental data: Coefficient of Variation (CoV),

/    / /   / / / / ; skewness coefficient, 3
3, /   3
  / /   / / / / , and excess kurtosis, 4

4,( / ) 3   ( / ) 3 ( / ) 3 ( / ) 3( / ) 3 ( / ) 3   ( / ) 3 ( / ) 3 ( / ) 3 ( / ) 3( / ) 3( / ) 3 , are reported in Table I.

In this section, the described procedure is applied to the benchmark truss structure depicted in Figure 1.
The cross-sectional areas and Young’s moduli of five bars are A1=A2=A3=A4=A5=0.0009 [m2] and 
E0,1=E0,2=E0,3=E0,4=E0,5=2.1 106 [N/mm2] respectively. In particular, first, in the framework of probabilistic 
approaches, the statistics of the response are evaluated by applying the proposed formulation and compared 
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with the same obtained by Monte Carlo Simulation (MCS). Then, by applying the Improved Interval 
Analysis, the bounds of nodal response in terms of displacements are evaluated. 
Table I. Statistical results for Young Elastic Modulus from experimental data. 

N. Samples 128
Mean:  [N/mm2] 198110.68
Standard Deviation:  [N/mm2] 13868.14
Minimum [N/mm2] 161742.41
Median [N/mm2] 198147.39
Maximum [N/mm2] 240816.20
CoV 0.07
Skewness Coefficient 0.4188

Excess Kurtosis 4.8246

Figure 1. Sketch of benchmark truss system. 

4.1. PROBABILISTIC APPROACH

In the framework of the probabilistic approach and according to the Chauvenet criterion for the selection of 
the effective experimental results (Barbato et al., 2011), the Kernel PDF of the Young elastic modulus is
evaluated in the interval domain [a,b] of existence of PDF which is chosen as  4.0 , 4.0              4.0 , 4.0   4.0 , 4.0         4.0 , 4.0   4.0 , 4.0   4.0 , 4.0   4.0 , 4.0       4.0 , 4.0   4.0 , 4.0 4.0 , 4.0   4.0 , 4.0                   4.0 , 4.0   4.0 , 4.0   4.0 , 4.0   4.0 , 4.0 4.0 , 4.0   4.0 , 4.0   4.0 , 4.0   4.0 , 4.0 ;
then, to avoid numeric instability, the interval is normalized into the domain [,1]. Finally the Kernel PDF
is determined, according to Eq. (32), as a linear combination of 30 normal basis kernel densities, whose 
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coefficient pi are computed by Eq. (40) once the Maximum Entropy optimization problem is solved 
(Alibrandi and Ricciardi, 2008). 

Figure 2. Comparison between Kernel PDF, Gaussian PDF and experimental data. 

The Kernel PDF is depicted in Figure 2 together with the histogram of experimental data and the 
Gaussian PDF having same mean value and standard deviation of experimental data. Clearly this figure 
shows as the Kernel PDF better fits experimental data. 

The nominal displacement vector 0
Nu is evaluated as follows : 

1
0 0
N u K F              (41)

obtaining: 

 

1

1
0

2

2

4.29699
1.12239
5.41939
1.12239

mm

x

yN

x

y

u
u
u
u

   
   
    
   
   

  

u ; (42)

To evaluate in explicit form the first two statistics of the response, the Kernel PDF, to satisfy the 
condition (13), has to be normalized into a lesser than 1 domain. This normalization has been performed by 
means of the following transformation: 

e 



 








e  


                 (43)

where  is the mean value of Kernel PDF. So operating the normalized Kernel PDF of uncertain elastic 
modulus,  Ep e  p e  , represented in Figure 3, lies into the interval domain  0.28,0.28 .

    Kernel PDF

Gaussian 
PDF
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Figure 3. Normalized Kernel PDF. 

 
To test the accuracy of proposed method, in Table II are reported the mean values, 

ru , and the standard 
deviations,

ru , of displacements of studied structure, evaluated by means of Eqs. (17) and compared with 
the ones coming from MCS. In Table II the percentage errors are given, comparing the analytical data with 
the results obtained from MCS of 5000, 500 000, 1 000 000 samples. Negligible percentage errors confirm 
the accuracy of proposed method, provided a considerable reduction of the computational effort. 
 
Table II. Comparison between stochastic results and Monte Carlo Simulation (Kernel Density). 
 
Parameter 

[mm] 
analytical MCS 5000 Error [%] MCS  

500000 
Error [%] MCS 106 Error [%] 

µux1  4.31818 4.31884 0.0153 4.31854 0.0083 4.3180 -0.0037 
µuy1  1.12793 1.12768 -0.0222 1.12796 0.0027 1.1280 0.0062 
µux2  5.44611 5.44564 -0.0086 5.44658 0.0086 5.4468 0.0127 
µuy2 1.12793 1.12806 0.0115 1.12774 -0.0168 1.1280 0.0027 
σux1 0.23680 0.23715 0.1451 0.23677 -0.0114 0.2369 0.0355 
σuy1 0.07893 0.07943 0.6288 0.07876 -0.2174 0.0789 -0.0390 
σux2 0.24961 0.25103 0.5669 0.24949 -0.0481 0.2496 0.0024 
σuy2 0.07893 0.07801 -1.1898 0.07885 -0.1074 0.0789 0.0152 

 
The same analytical approach has been applied assuming a Gaussian PDF. In Table III the percentage 

errors between analytical results and MCS with 1.000.000 samples are reported, confirming the accuracy of 
proposed method. 
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Table III. Comparison between stochastic results and Monte Carlo Simulation (Gaussian PDF). 
 

Parameter[mm] analytical MCS106 Error[%] 
µux1  4.318

34 
4.3182

1 
-

0.0030 
µuy1  1.127

97 
1.1280

7 
0.008

9 
µux2  5.446

31 
5.4460

1 
-

0.0055 
µuy2 1.127

97 
1.1280

2 
0.004

4 
σux1 0.240

32 
0.2405

22 
0.085

6 
σuy1 0.080

11 
0.0801

257 
0.025

5 
σux2 0.253

32 
0.2534

63 
0.058

4 
σuy2 0.080

11 
0.0801

882 
0.103

4 
 
Table IV summarizes the 3rd and 4th order central moments sorted by MCS using 106 samples, for the 

adopted densities. 
 

Table IV. Comparison between 3rd and 4th order central momentsfor both PDF. 
 

Parameter Kernel PDF Gaussian PDF 
3,ux1 [mm3] 0.0042728 0.0053643 
3,uy1 [mm3] 0.0001791 0.0002233 
3,ux2 [mm3] 0.0044510 0.0055959 
3,uy2[mm3] 0.0001784 0.0002263 
4,ux1 [mm4] 0.0138060 0.0111287 
4,uy1 [mm4] 0.0001831 0.0001398 
4,ux2 [mm4] 0.0160580 0.0134891 
4,uy2[mm4] 0.0001835 0.0001405 

 
Such central moments combined with the MCS mean values and standard deviations are used to evaluate 
the CoVs, /u u  , the skewness coefficients, 3

3, /u u  , and excess kurtosis, 4
4,( / ) 3u u   , of both Kernel 

PDF and Gaussian PDF in terms of displacements. 
Due to nonlinear filtering of input data, it is well known that the expected structural response has 

property of non Gaussianity. Adopting the kernel density function, which takes in account of higher order 
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statistics of the input data, the structural response statistics of order higher than the second gives results 
which are different from the ones sorted by simply assuming the Gaussianity of input data (i.e. taking into 
account the input data statistics up to the second order). Such consideration justifies the need to take into 
account of input data statistics of higher order to the second, when it is interesting to well catch the non 
Gaussian character of structural response. 

On the other hand, the non Gaussianity of the response in both cases is highlighted by slightly right- 
tailed shape with respect to the mean of responses, as indicated by skewness coefficient, given in Table V 
where it is clearly evident that, adopting the Kernel PDF, the sensible higher value of excess kurtosis is 
provided. 
 
Table V. C.O.V., skewness coefficients and excess kurtosis of the responses. 
 

Parameter Kernel PDF Gaussian PDF 

1 1ux ux   0.055 0.056 

1 1uy u   0.070 0.071 

2 2ux ux   0.046 0.047 

2 2uy uy   0.070 0.071 
3

3, 1 1ux ux   0.3214 0.3855 
3

3, 1 1uy uy   0.3646 0.4342 
3

3, 2 2ux ux   0.2862 0.3437 
3

3, 2 2uy uy   0.3625 0.4390 

4, 1
4

1

3ux

ux




  1.3845 0.3253 

4, 1
4

1

3uy

uy




  1.7249 0.3909 

4, 2
4

2

3ux

ux




  1.1361 0.2683 

4, 2
4

2

3uy

uy




  1.7246 0.3985 

 
4.2. INTERVAL ANALYSIS 
 
It is well known that when the information on experimental data is incomplete or fragmentary, the interval 
analysis is a very efficient method to evaluate the propagation of the uncertainties on structural response. 
To define the interval of uncertainty, the knowledge of the distribution function is not required but its 
bounds only. Furthermore, according to the philosophy of interval analysis, the measured data define an 
interval with full confidence that the value is within the interval, and not outside it. That is, it is not a 
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confidence interval or credibility interval. Rather, the interval represents sure bounds of the measurement, 
with full degree of confidence on experimental data (Ferson et al., 2007).  

The starting point in using a bounded interval to model the measurement uncertainty is to acknowledge 
the intrinsic imprecision in measurement. In the studied truss structure, the population of experimental data 
is numerous, so that reliable results can be obtained by applying the probabilistic approach, described in the 
previous section. The aim of this section, is to compare the results provided by the probabilistic model with 
the ones evaluated by applying the Improved Interval Analysis. For this purpose, the first step is to define a 
reliable interval of the uncertain elastic modulus. A reasonable choice seems to be a normalized interval 
containing all experimental data, i.e.  0.28, 0.28   , which has been chosen for Kernel PDF evaluation. In 
Table VI, the chosen values of lower bound (LB),  , and upper bound (UB),  , as well as the midpoint, 

  2    , deviation,   2     , and Coefficient of Interval Uncertainty (C.I.U.), 
  , are 

reported. 
 

Table VI. Interval parameters for Young Elastic Modulus from experimental data (100% of experimental data). 
 

  [N/mm2] 142638.10 
  [N/mm2]  253583.26 

  [N/mm2]  198110.68 
  [N/mm2] 110945.16 
. . .C I U   0.28 

 
The corresponding midpoint displacement vector 0u  and the lower and the upper bounds of 

displacements vectors calculated by Eqs. (30) and (31) are given respectively as: 
 

     0

3.35701 5.96811
0.87686
4.23387 7.52701
0.87686

4.66256
1.21788 1.55890

mm mm ; mm ;
5.88044
1.21788 1.55890

     
     
       
     
     
     

u u u  

 
The difference between midpoint values and explicit mean value vectors for Kernel PDF and Gaussian 

PDF, reported in Table II and Table III, is reported in Table VII. 
In Figures 4-7 the bounds of interval responses, in terms of displacement, sorted by Improved Interval 

Analysis, are compared with the results obtained in terms of confidence range displacements, calculated as 
the mean value ± three times standard deviation of stochastic results, coming out by assuming maximum 
entropy approach and adopting the normal distribution. These Figures show that for the analysed truss 
structure, the confidence range lie into the bounds defined by Interval Analysis, if an interval that includes 
all experimental data is chosen. 
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Table VII. Comparison between mean values and midpoint displacements.  

Parameter
[mm] 0u UμU

(Kernel PDF)
UμU

(Gaussian PDF)
Difference [%]
(Kernel PDF)

Difference [%]
(Gaussian PDF)

µux1 4.66256 4.31818 4.31834 7.3861 7.3826
µuy1 1.21788 1.12793 1.12797 7.3858 7.3825
µux2 5.88044 5.44611 5.44631 7.3860 7.3826
µuy2 1.21788 1.12793 1.12797 7.3858 7.3825

Figure 4. ux1: interval analysis bounds and Kernel and Gaussian PDF 3 .u u 

Figure 5.uy1: interval analysis bounds and Kernel and Gaussian PDF 3 .u u 
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Figure 6. ux2: interval analysis bounds and Kernel and Gaussian PDF 3 .u u   

 

 
 

Figure 7. uy2: interval analysis bounds and Kernel and Gaussian PDF 3 .u u   

 
 

5. Conclusions 
Starting from tensile tests performed on steel bars, where elastic moduli are measured, the PDF of 

uncertain elastic modulus was recovered by maximum entropy approach. This function was adopted for the 
static analysis of a truss structure to evaluate stochastic structural response by means the Rational Series 
Expansion  technique. The comparison with Monte Carlo Simulation results confirmed the accuracy of 
method. 

In order to compare the results provided by the probabilistic model with the ones evaluated by applying 
the Improved Interval Analysis, the confidence range displacement, calculated as the mean value ± three 
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times standard deviation of stochastic results, is determined. Then the bounds of the response interval by 
applying the Improved Interval Analysis are evaluated. The comparison of two response intervals showed 
that the selected confidence range lies into the bounds defined by Interval Analysis if, for the uncertain 
elastic modulus, the interval that includes all experimental data is chosen. 
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Abstract: It is often the case that sparse statistical data prohibits the assignment of a pre-
cise probability distribution to a given uncertain variable. In these cases, conventional statistical
approaches such as Bayesian inference provide uncertain probability distributions - or imprecise
probabilities. For convenience, many probabilistic approaches assign a specific distribution based on
Maximum Likelihood Estimation (MLE) or some other criteria. Yet propagation of this single MLE
distribution ignores potentially importance uncertainty/variability in these variables. Meanwhile,
some quasi-probabilistic approaches treat the uncertainties in the distribution using intervals (e.g.
mean value of a distribution may be assigned an interval) and propagate a family of distributions to
construct a probability-box (or p-box) to bound the probabilities (Beer et al., 2013). This approach
is generally computationally very expensive requiring several Monte Carlo analyses to propagate a
large number of distributions.

In this work, we propose an approach based on importance sampling to propagate imprecise
probability distributions with a single Monte Carlo analysis. The approach uses Bayesian inference
to quantify the imprecise probabilities - determining a set of possible candidate distributions (that
may come from different families - e.g. normal, lognormal, gamma, etc.) weighted according to their
probability of occurrence. We then identify an optimal sampling distribution that best represents all
possible candidate distributions. Samples from this optimal sampling distribution are propagated
using Monte Carlo simulation and are re-weighted according to the different candidate distributions.
Hence, we achieve the propagation of many probability distributions with a single Monte Carlo
simulation. A further advantage of the methodology is that the underlying probability models
can be updated using Bayesian updating and propagation of these updated distributions does not
require additional simulations. Instead, the weights associated with the existing simulations are
updated directly to update the probability model of the solution.

Keywords: imprecise probability, Bayesian inference, importance sampling

1. Introduction

Modern engineering structures and systems, and the models used to represent them, are often
characterized by a high degree of complexity. Modeling the influence of various physical phenomena
in these systems presents a significant challenge. With the rapid growth of deterministic modeling
capabilities, it is becoming widely acknowledged that predictive modeling capabilities can only be
achieved by accounting for uncertainties in the modeling process. Therefore, uncertainty quantifi-
cation plays an important role in computational modeling from design to reliability analysis and
risk assessment of complex systems.

c© 2016 by authors. Printed in Germany.
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A prominent obstacle in uncertainty quantification is the discrepancy between the required
information and the available information. This discrepancy is often caused by limitations in the
ability to collect sufficient information/data to accurately assign values or probability models to
all variables in the problem (i.e. the presence of epistemic uncertainty). For instance, naval ship
structures are incredibly complex engineering systems that are subject to highly stochastic marine
environments. Further complicating the analysis of these structures is that design specifications
provide only nominal values for material and geometric variables and maintenance/inspections are
sparse, qualitative, and cover only a small fraction of critical structural components. Although
some powerful statistical tools can be used to enable probabilistic modeling given sufficient data
of suitable quality, the available data in engineering practice are often limited and of poor quality,
which prevents the identification of a precise probability model and its associated parameters.

Imprecise probability approaches have been widely employed and have proven to be effective tools
to overcome the issues caused by vague, limited and equivocal information. A series of influential
developments on generalized methods has been discussed in the literature (Helton and Oberkampf,
2004; Beer et al., 2013) from various perspectives, including Bayesian approaches (Der Kiureghian
et al., 2009), interval methods (Moore and Bierbaum, 1979; Ferson and Hajagos, 2004; Ferson
and Ginzburg, 1996), Dempster-Shafer evidence theory (Nelsen et al., 2004) and fuzzy theory
(Dubois and Prade, 2005; Stein et al., 2013) among other approaches. More generally, attempts
have been made to bring all of these components together under a unifying theory of imprecise
probability, which is mainly part of the generalized framework of information theory (Walley, 1991;
Walley, 2000). In this framework, probability theory is employed on behalf of stochastic variations
in the system variables while epistemic uncertainties associated with the probability laws and their
parameters are described using the concepts discussed above.

Traditional statistical inference is based on an assumed probability model (i.e. distribution
type) and its parameters (e.g. mean and standard deviation) are estimated using observed data.
When sufficient data is provided, these conventional approaches assign a specific distribution with
parameters estimated using e.g. maximum likelihood estimation or method of moments. However, it
may be impossible to identify a precise distribution type and its parameters given uncertainty due to
limited data. This results in many possible/viable probability models with interval or probabilistic
model parameters such that uncertainty propagation becomes a major challenge. Existing methods
for propagation of imprecise probabilities are usually computationally intractable for all but the
simplest problems because they typically require a large number of individual probability studies
spanning the range of possible probability distributions and parameters.

This paper proposes an efficient methodology to propagate imprecise probability distributions
using Bayesian inference and importance sampling with a single Monte Carlo study. An optimal
sampling distribution is identified to represent all candidate distributions by minimizing the overall
differences between the sampling distribution and the ensemble of candidate variable distributions
characterized by the Hellinger distance and the total variation distance. Samples are generated
by this optimal sampling distribution and re-weighted according to importance sampling to simul-
taneously propagate all candidate distributions. The method has the further advantage that the
probability study can be updated directly as additional data is collected. This is enabled through
Bayesian updating of the joint model parameter distribution and re-weighting of the samples
according to the updated probability laws.
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2. Review of Important Concepts

2.1. Bayesian inference

Bayesian inference holds a central position in data-driven uncertainty quantification and uncertainty
propagation in engineering science. As a statistical method, Bayesian inference is used to obtain a
posterior PDF p(φ|d,M) for the parameters φ of a model class M using experimental observations
d. This is achieved through Bayes’ rule

p(φ|d,M) =
p(d|φ,M)p(φ,M)

p(d,M)
(1)

where p(φ,M) is the prior PDF that expresses existing knowledge (or lack thereof) about the
parameters, p(d|φ,M) is the likelihood of observing the data d from the model class M with
parameters φ, and p(d,M) is the evidence of model M and is equal to

p(d,M) =

∫
p(d|φ,M)p(φ,M)dφ (2)

Evaluating p(d,M) is often a non-trivial task because the integration in Eq. (2) is usually analytical
intractable for nonlinear and high-dimensional models. To overcome this issue, either Markov Chain
Monte Carlo (MCMC) approaches are employed or conjugate distributions are utilized.

The posterior model parameters determined from Eq. (1) are stochastic and are presented in
the form of a PDF. From this PDF, the model parameters are frequently assigned using maximum
likelihood estimation (MLE) but this ignores the essential variability in distribution parameters,
which may have an important role in the results of a probability study - especially when data
are sparse, imprecise or limited. Furthermore, the selection of the model M itself is subject to
question unless abundant data are provided or some some rationale is used to supply convincing
evidence that a specific model form applies (e.g. Central Limit Theorem applies so the distribution
should be normal). In the coming sections, we discuss issues of non-unique model selection and the
simultaneous propagation of many models having uncertain parameters.

2.2. Model selection

In the case of sparse data, the selection of a probability model is a substantial challenge. Existing
model selection procedures often rank the candidate models based on some widely accepted criteria.
Most approaches of model selection can be categorized into three classes: (a) frequentist methods
(Guyon et al., 2010), (b) Bayes factor method (Berger and Pericchi, 1996), and (c) methods based
on information theory such as the Akaike information criterion (AIC) (Akaike, 1974) and Bayesian
Information Criterion (BIC) (Schwartz, 1978). The AIC and BIC, defined as follows, are used here

AIC(M) = 2p− 2L(φ̂) (3)

BIC(M) = p log n− 2L(φ̂) (4)

where L is the log-likelihood for model M , φ̂ are the parameter values that maximize the likelihood
function, p is the dimensionality of the parameter space, and n is the number of observations.
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Minimizing the AIC and BIC corresponds to maximizing the posterior model probability for a
large amount of data. Again, the AIC and BIC cannot provide an exact means of model selection
(especially under limited data), but instead provide evidence that certain types may be valid while
others are not.

2.3. Importance sampling

To improve the accuracy and reduce the cost of stochastic simulation approaches, diverse variance
reduction techniques exist. One of the most widely-used approaches is Importance Sampling (IS).
Based on the introduction of a proposal sampling density (referred to as the IS density), IS con-
centrates the computational effort in regions of the uncertain model parameter space that play a
more important role in the overall probabilistic performance. Consider a system that involves some
design variables x and stochastic model parameters θ. If the performance function of the system
model is given by f(x,θ), then the expected performance is computed as

L =

∫
f(x,θ)p(θ)dθ = Ep[f(x,θ)] ≈ 1

N

N∑
i=1

f(x,θi) (5)

where θi are independent identically distributed (i.i.d.) samples drawn from p(θ), Ep[·] is the
expectation under target distribution p(θ), and N is the number of samples. Importance sampling
associated with proposal sampling density q(θ) transforms the integral to

L̂ =

∫
f(x,θ)

p(θ)

q(θ)
q(θ)dθ = Eq[f(x,θ)

p(θ)

q(θ)
] ≈ 1

N

N∑
i=1

f(x,θi)
p(θi)

q(θi)
(6)

where Eq[·] is the expectation with respect to q(θ). The ratio ω(θ) = p(θ)/q(θ) can be interpreted as
the weights of samples generated from q(θ). Selection of an efficient proposal sampling density will
lead to significant improvement in accuracy (i.e. variance reduction). Conversely, poor IS density
selection can increase variance. The optimal choice for the proposal sampling density is derived by
minimizing the variance of the estimator L̂ as

q∗(θ) =
|f(x,θ)p(θ)|∫
|f(x,θ)p(θ)| dθ

(7)

where |·| means the absolute value. In practice, this choice is intractable since it needs simulation of
samples from a PDF that is proportional to the integrand of the expectation and the expectation
itself.

2.4. Hellinger distance and total variation distance

As the choice of optimal sampling distribution is not feasible using Eq. (7), one way is to find
a proposal sampling density that has a minimal difference with the optimal one. The Hellinger
distance, as a special case of the Csiszár’s φ-divergence (Csiszar, 1975), can be used to quantify the
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difference between probability distributions p(θ) and q(θ) as

H(P,Q) =

(
1

2

∫ (√
p(θ)−

√
q(θ)

)2
dθ

) 1
2

(8)

One way to minimize the difference between two distributions is to find the distribution that
produces the minimum Hellinger distance estimator (MHDE) (Beran, 1977). In order to obtain the
solution of

~ = arg min
1√
2

∥∥∥√p(θ)−
√
q(θ)

∥∥∥
2

(9)

where ‖p− q‖2 =

(∫ (√
p(θ)−

√
q(θ)

)2
dθ

) 1
2

denotes the `2 norm, we instead use the square

MHDE which is convenient for expressing the derivative of the optimal sampling distribution in
the following section

~2 = arg min
1

2

∥∥∥√p(θ)−
√
q(θ)

∥∥∥2

2
(10)

where ‖p− q‖22 =
∫ (√

p(θ)−
√
q(θ)

)2
dθ denotes the square `2 norm. This is achieved by con-

structing a nonparametric proposal density q(θ) and conducting an optimization with Eq. (10) as
the objective.

3. Optimal Importance Sampling for Multiple Distributions

To date, importance sampling has always been used with a precisely specified target distribution
p(θ). However, in the imprecise probability case caused by lack of data, the target distribution
cannot be assigned precisely and therefore, the estimation of the optimal sampling distribution
becomes a significant challenge. This work first utilizes a Bayeisan inference approach to quantify
the imprecise probabilities by identifying several viable probability models M through AIC/BIC
and retaining the distributions of their model parameters φ. From this, a series of possible candidate
target distributions are assigned on the basis of their probability of occurrence. The fundamental
difference with classical importance sampling is that a set of probabilistically weighted target
distributions are taken into consideration. The crucial issue addressed in this study is how to
select an optimal importance sampling density to effectively represent and propagate all candidate
target distributions. To do so, we need to identify a sampling distribution that is as close as possible
to the ensemble of target distributions.

Our object of maximizing the representativeness of the importance sampling distribution for
multiple target distributions can be restated as minimizing the total difference between the im-
portance sampling distribution and the ensemble of target distributions. This is the equivalent of
minimizing the distance in the probability space. Utilizing the Hellinger distance, an overall square
MHDE with uncertain distribution parameters and distribution types is proposed as

~2 = arg min

Nd∑
i=1

∫
φ

1

2

∥∥∥√pi(θ|φ)−
√
q(θ)

∥∥∥2

2
dφ (11)
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where Nd is the number of candidate probability models defined through the target densities pi(θ|φ)
having parameters φ. An advantage of this Hellinger distance metric is that we can obtain the
analytical solution for the optimal proposal sampling. If we set the derivative of the overall square
MHDE ~̂2 with respect to q(θ) as

∂~̂2

∂q(θ)
=
∂
∑Nd

i=1

∫
φ

1
2

(√
pi(θ|φ)−

√
q(θ)

)2
dφ

∂q(θ)
(12)

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

∂
∫
φ

(√
pi(θ|φ)−

√
q(θ)

)2
dφ

∂q(θ)

 (13)

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

(
∂
∫
φ pi(θ|φ)− 2

√
pi(θ|φ)q(θ) + q(θ)dφ

∂q(θ)

)
(14)

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

(∫
φ

(
1−

√
pi(θ|φ)

q(θ)

)
dφ

)
(15)

For the special case of two parameter distributions with φ = (µ, σ) where µ and σ are the mean
and standard deviation respectively, we have

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

(∫
µ

∫
σ

(
1−

√
pi(θ|µ, σ)

q(θ)

)
dµdσ

)
(16)

By partitioning the joint probability density of model parameters pi(θ) for each distribution type,
we extract a finite but representative number of candidate target distributions from the infinite
set. The derivative can then be approximated using discretized means µj(j = 1, 2, ..., Nmi) and
standard deviations σk(k = 1, 2, ..., Nsi) as

∂~̂2

∂q(θ)
≈ 1

2

Nd∑
i=1

Nmi∑
j=1

Nsi∑
k=1

1−

√
pi(θ|µj , σk)

q(θ)

 (17)

where Nmi ×Nsi represents the total number of uncertain distribution parameters for model class

Mi (e.g. mean and standard deviation for two-parameter distributions). Setting ∂~̂2
∂q(θ) = 0 and (for

simplicity) assuming Nmi = Nm ∀i and Nsi = Ns ∀i, we have

Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

1−
Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

√
pi(θ|µj , σk)

q(θ)
= Nd ·Nm ·Ns−

∑Nd
i=1

∑Nm
j=1

∑Ns
k=1

√
pi(θ|µj , σk)√

q(θ)
= 0 (18)

Therefore, the optimal proposal sampling density will be

q∗(θ) =

∑Nd
i=1

∑Nm
j=1

∑Ns
k=1

√
pi(θ|µj , σk)

Nd ·Nm ·Ns

2

(19)
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However, as a nonparametric model, q∗ is not always a PDF that satisfies
∫
q∗(θ)dθ = 1 unless all

candidate target distributions are the same. Actually, all target distributions are different here, so
it will be improper to choose q∗(θ) as the proposal sampling density. In order to ensure q∗(θ) is a
valid PDF, we may alternatively consider the optimization according to the total variation distance
∆(P,Q) defined through the following `1 norm

∆(P,Q) = max ‖P −Q‖1 =
1

2

∑
θ

|p(θ)− q(θ)| (20)

thanks to the following property stated by (Lindsay, 1994) relating it to the Hellinger distance

H2(P,Q) ≤ ∆(P,Q) ≤
√

2H(P,Q) (21)

Thus, an equivalent way to obtain the optimal proposal sampling distribution is to minimize the
total variation distance in Eq. (20), which yields

q̂∗(θ) =
1

Nd ·Nm ·Ns

Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

pi(θ|µj , σk) (22)

where q̂∗(θ) is a nonparametric density estimator that consists of multiple mixture distributions.
If the weights of different distribution types and parameters are identical, the coefficient for each
candidate target will be equal. More generally, the optimal proposal density can be written with
different weighting coefficients

q̂∗(θ) =

Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

λijk · pi(θ|µj , σk) (23)

where λijk is the weighting coefficient for the ith distribution type with parameters of the jth mean

and the kth standard deviation, and satisfies∑
i,j,k

λijk = 1 (24)

These coefficients may be derived from probabilistic considerations that account for the probability
of occurrence of distribution parameters and model classes from the provided data.

4. Propagation of Imprecise Probability

By the discussion above, there are theoretically infinite candidate target distributions. Even after
discretization, thousands of candidate distributions remain. Existing algorithms are often very
computationally intensive since individual probability studies (Monte Carlo analyses) are needed
to propagate each distribution separately. The method proposed here utilizes importance sampling
to propagate these thousands of distributions simultaneously through a single Monte Carlo study
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by generating samples from the optimal proposal sampling density in Eq. (22), and reweighting
the samples according to each target. Specifically, after sampling from q∗(θ), importance sampling
estimators are constructed for each candidate target pi(θ|µj , σk) according to Eq. (6) and denoted

L̂ijk, i = 1, . . . , Nd, j = 1, . . . , Nm, k = 1, . . . , Ns. Note that all estimates L̂ijk are constructed from

the same set of samples drawn from q∗(θ), greatly reducing the computational cost over existing
methods.

This procedure generates a set of probability distributions for the system performance that
can be further assessed probabilistically. Given the Bayesian nature of the model construction,
each of the probability distributions has an associated probability of occurrence derived from the
joint density of its model parameters φ. Consequently, these distributions provide a rich source of
information that goes beyond, for example, probability bounds that are typically available (in the
form of a p-box for instance) to give a fully probabilistic measure of the output. This can be used
to evaluate quantities like the PDF/CDF for statistical quantities or probability of failure that
account for uncertainties associated with insufficient data.

A final advantage of the proposed method is that it can be readily updated to incorporate
new data as it is collected. Using Bayesian updating, the joint parameter distirbution p(φ) is
updated and the associated candidate target distributions are updated. However, it is not strictly
necessary to identify a new optimal sampling density and the existing samples can be used for
uncertainty propagation by re-weighting according to the importance sampling weights with the
new target densities. Note that this does not ensure a low-variance estimator. In fact, the sampling
density after updating is no longer optimal and may yield an increase in variance. If necessary, this
variance can be reduced by either adding samples from q∗(θ) or solving for a new optimal PDF
and resampling.

5. Numerical Example

The proposed methodology and its application are illustrated by an example considering the
probabilistic assessment of plate buckling strength with uncertain geometric and material pa-
rameters. Carlsen (Carlsen, 1977) derived an analytical expression to evaluate the normalized
buckling strength ψ of a simply supported plate in uniaxial compression considering the effects
of non-dimensional initial deflections δ0 and residual stress ηt resulting from welding as

ψ =
σb
σ0

=

(
2.1

λ
− 0.9

λ2

)(
1− 0.75δ0

λ

)(
1− 2ηt

b

)
(25)

where σb is the stress at which buckling occurs, λ = b/t
√
σ0/E is referred to as the slenderness

of the plate with width b, thickness t, yield stress σ0, and elastic modulus E. These material and
geometric variabilities are estimated from the data presented by Hess et al. (Hess et al., 2002) and
Soares (Soares, 1988) as presented in Table 1. According to a global sensitivity analysis (Saltelli,
2008), the yield stress shows the highest influence on the buckling strength accounting for nearly
half of its variance, and therefore will be the main concern of this work.
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Table I. Statistics for plate material, geometry and imperfection variables from Hess et al. (Hess
et al., 2002) and Soares (Soares, 1988).

Variables Physical Meaning Nominal Value Mean COV Sensitivity Index

b Width 24 0.992*24 0.028 0.017

t Thickness 0.5 1.05*0.5 0.044 0.045

σ0 Yield Strength 34 1.3*34 0.1235 0.482

E Elastic Modulus 29000 0.987*29000 0.076 0.194

δ0 Initial Deflection 0.35 1.0*0.35 0.05 0.043

η Residual Stress 5.25 1.0*5.25 0.07 0.233

We start with a collection of 25 yield stress values synthetically generated according to a normal
distribution with parameters given in Table I. All other variables are assumed deterministic and
taking their mean values. Next, we use the AIC (Eq. (3)) and BIC (Eq. (4)) to select viable
distribution types based on the limited data. Table II presents the AIC and BIC values for several
candidate distribution types. Note that only the Rayleigh and Exponential distributions stand
out as having particularly high AIC/BIC and therefore we do not consider these two types as
representative of our data. This leaves 11 distribution types that we consider as viable.

Table II. The rank sequence of distribution type using AIC and BIC.

Rank sequence Distribution type Akaike Information
Criterion (AIC)

Bayesian Information
Criterion (BIC)

1 Inverse Gaussian 160.9097 163.3474

2 Birnbaum-Saunders 160.9122 163.3499

3 Lognormal 160.9450 163.3828

4 Gamma 161.3044 163.7422

5 Loglogistic 161.7626 164.2004

6 Nakagami 161.7886 164.2264

7 Rician 162.3961 164.8338

8 Normal 162.4284 164.8662

9 Logistic 162.8088 165.2465

10 Weibull 166.3174 168.7552

11 Extreme Value 170.0299 172.4676

12 Rayleigh 208.0995 209.3183

13 Exponential 241.5110 242.7299
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Figure 1. Joint posterior distribution for mean and standard deviation from Bayesian inference using datasets with
25 (left), 50 (middle) and 100 (right) yield stress values.

Using Bayesian inference, the joint posterior distribution of the mean and standard deviation
are obtained from the initial 25 data. An equal partition of the joint probability distribution into a
10×10 grid yields 100 distinct values of the model parameters shown by the black dots in Figure 1.
These pairs of mean and standard deviation values are then used with each of the 11 distribution
types to produce a representative set of target distributions shown by the gray densities in Figure
2. When more data are collected, the joint posterior distribution of (µ, σ) is updated using Bayesian
updating, as shown by the contours in Figure 1 for 25, 50, and 100 yield stress values. Again, the
joint density is discretized through an equal partitioning of the probability space shown by the
black dots.

The optimal sampling distribution is constructed analytically based on these 11 candidate target
distributions and 100 possible parameter values (i.e. from a total of 1100 candidate target distri-
butions - each equally probable). The optimal sampling density is shown by the black curve in
Figure 2. The suite of distributions in Figure 2 are propagated through Eq. (25) by generating
5000 samples from the optimal sampling density and applying the importance sampling weights for
each distribution. This propagation results in the gray band of CDFs for the compressive strength
shown in Figure 3. Note that we do not update the optimal sampling density as data is gathered.
This can be observed in Figure 2 where it is seen that the gray band of candidate target densities
narrows but the black optimal sampling density remains the same. Hence, the optimal sampling
density is no longer optimal in the right and middle images but remains sufficient for propagation
and no new samples need to be generated. All of the CDFs shown in Figure 3 (from left to right)
have been generated from the same 5000 random samples. Notice also that the band of CDFs in
Figure 3 narrows considerably as additional yield stress values are collected. This is expected as
the additional data reduces the epistemic uncertainty.

Next, consider that failure occurs when ψ < 0.56 - shown by the dashed vertical line in Figure 3.
Given the equal partitioning of the probability space, each of the CDFs resulting from a given input
distribution in Figure 3 is equally probable (note that the distribution types are not necessarily
equally probable). We can therefore determine the empirical CDF of P (ψ < 0.56) conditioned on
the input distribution type as shown in Figure 4. Each of these CDFs has 100 values corresponding
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Figure 2. Ensemble of candidate target densities and the optimal proposal sampling density for yield stress from
datasets with 25 (left), 50 (middle) 100 (right) yield stress values.

Figure 3. Ensemble of cumulative distribution functions with uncertain yield stress derived from propagation of
uncertain probability models constructed using 25 (left), 50 (middle), and 100 (right) yield stress values.

to the 100 points in the 10× 10 grid for the partitioning of the joint parameter probability space.
Notice again that when there is little data, the CDFs are wide with P (ψ < 0.56) in the range
[0, 0.18]. However, as data is collected the range narrows considerably such that P (ψ < 0.56) in the
range [0, 0.09]. Theoretically, as a very large amount of data is collected these CDFs will converge
toward a step function such that P (ψ < 0.56) is known with certainty for each assumed input
distribution.
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Figure 4. Empirical CDF of the probability of plate buckling failure P (ψ < 0.56) with uncertain yield stress derived
from propagation of uncertain probability models constructed using 25 (left), 50 (middle), and 100 (right) yield stress
values..

6. Conclusion

Bayesian inference is used to quantify the uncertainty associated with a distribution derived from
data. Yet, in the almost universal case of lack of complete data, the derived distribution cannot be
precisely specified. We propose a efficient approach, based on Importance Sampling, for propagating
uncertain probability distributions. The method identifies an optimal sampling distribution that
is representative of the possible range of distributions and adaptively reweights the samples to
simultaneously propagate the full range. An advantage of this approach is that the underlying
probability models can be simply updated using Bayesian updating and we don’t need additional
simulations for propagation of the updated distributions. Instead, the existing simulations are
reweighted and updated directly to update the proabability model.
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Abstract: This contribution proposes a framework for performing fuzzy analysis for problems
of structural dynamics. In order to avoid repeated structural analyses, a meta-model is used to
represent the frequency response function (FRF) approximately. This meta-model comprises two
different approximation levels. In the first level, approximate spectral properties (natural frequencies
and mode shapes) are considered for calculating the FRF. In the second level, the mode shapes are
approximated using a linear expansion with respect to the fuzzy variables of the problem, while the
natural frequencies are also represented using a linear expansion but with respect to intervening
variables. The fuzzy problem is solved using α-level optimization. A numerical example illustrates
the accuracy and efficiency of the proposed scheme

Keywords: fuzzy analysis, structural dynamics, approximation concepts, intervening variables

1. Introduction

The so-called non traditional approaches for uncertainty quantification in engineering have gained
considerable attention in the last years (Möller et al., 2000). In particular, interval analysis and
fuzzy analysis offer the possibility of addressing problems where there is lack of knowledge or
imprecision on the input parameters affecting the performance of a system. In this context, fuzzy
analysis can be understood as a sequence of interval analyses. The value of applying fuzzy analysis
is that it allows to identify sensitivities of the response of a structure with respect to the magnitude
of imprecision of the input.
In spite of the evident advantages of fuzzy structural analysis, its application is not widespread. This
is due to the fact that fuzzy analysis demands significant numerical efforts. In such scenario, this
contribution presents an approach for performing fuzzy analysis of a particular class of problems,
which is most efficient. The class of problems considered involve linear dynamical structural systems,
which are analyzed using the frequency response function (FRF).
The efficient solution of problems of fuzzy structural dynamics has been the object of active research
in the last few years. The approaches proposed for solving this problem can be broadly classified
into two groups. The first group includes approaches that apply interval arithmetic. For example,
in Modares et al., 2006, the intervals associated with natural frequencies of a structure comprising

c© 2016 by authors. Printed in Germany.

REC 2016 - M. Valdebenito, C. Pérez, H. Jensen and M. Beer
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interval parameters are calculated exactly using only two structural analyses by taking advantage of
a formulation based on the Rayleigh quotient. Dessombz et al., 2001 apply an iterative algorithm for
assessing the intervals associated with FRF functions; the algorithm addresses dependency issues
of interval arithmetic. Manson, 2005 applies complex affine analysis for estimating the fuzzy FRF.
Sim et al., 2007 propose an approach for calculating the FRF by considering exact bounds for the
natural frequencies plus a first order Taylor expansion of the mode shapes. Muscolino et al., 2014
consider a rational series expansion in order to produce an accurate approximation of the FRF as
an explicit function of the fuzzy variables.
The second group of strategies for fuzzy dynamic analysis includes approaches that apply optimiza-
tion techniques, which attempt to identify the extrema of the structural response. For example, in
Adhikari et al., 2011, the application of high dimensional model representation has been investigated
in order to generate an explicit approximation of the fuzzy responses of interest. In Beer and
Liebscher, 2008, a general framework for design under fuzziness is presented, which combines cluster
analysis, an appropriate optimization strategy and robustness assessment. Adhikari and Khoda-
parast, 2014 propose a framework for fuzzy analysis combining the so-called Polynomial Chaos
Expansion (PCE) in combination with a mode-based reduction strategy. Massa et al., 2008 propose
an approach for solving fuzzy structural dynamics problems where natural frequencies and mode
shapes are approximated using Padé rational functions. In addition to the two groups of strategies
for fuzzy dynamic analysis mentioned above, it is interesting to note that a hybrid approach has been
proposed by De Munck et al., 2008, where modal interval analysis (Moens and Vandepitte, 2004)
and a response surface are applied simultaneously for estimating the intervals associated with the
FRF.
The approach proposed in this contribution belongs to the second group mentioned above, i.e. it
is formulated within the context of the α-level optimization strategy (Möller et al., 2000). In order
to identify the minimum and maximum values of the structural response (for a given member-
ship value α), the optimization algorithm introduced in (Li and Au, 2010) is considered, which is
based on Subset Simulation (Au and Beck, 2001). In addition, the structural response is calculated
approximately using a meta-model which approximates the frequency response function (FRF)
explicitly with respect to the fuzzy input variables. This meta-model comprises two different
approximation levels. In the first level, approximate spectral properties (natural frequencies and
mode shapes) are considered for calculating the FRF. In the second level, the mode shapes are
approximated using a linear expansion with respect to the fuzzy variables of the problem, while the
natural frequencies are also represented using a linear expansion but with respect to intervening
variables (Schmit and Farshi, 1974). The application of the latter type of variables has already been
shown to provide accurate approximations within the context of fuzzy analysis for static structures
(Valdebenito et al., 2016).
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2. Formulation of the Problem

2.1. Fuzzy Variables and Structural Model

Consider a linear elastic structure modeled using the FE method (Bathe, 1996). In order to charac-
terize this structure, there are xi, i = 1, . . . , Np fuzzy variables associated with structural properties
(e.g. Young’s modulus, cross section area, etc.) and yj , j = 1, . . . , Nl fuzzy parameters associated
with loads acting over the structure; µx̃i(xi), i = 1, . . . , Np and µỹj (yj), j = 1, . . . , Nl represent
the membership functions associated with these fuzzy variables. It is assumed that the membership
functions are convex. In the following, the fuzzy variables associated with structural properties and
loads are grouped in vectors x = 〈x1, x2, . . . , xNp〉T and y = 〈y1, y2, . . . , yNl

〉T , respectively.
The structural system under study is characterized considering a total of Nd degrees-of-freedom.
Then, the equation of motion relating structural properties, loads, displacements, velocities and
accelerations of the FE model of the structure is:

M(x)ü(t,x,y) +C(x)u̇(t,x,y) +K(x)u(t,x,y) = f(t,y) (1)

where t represents time; M(x), C(x) and K(x) are the mass, damping and stiffness matrices
(dimensionNd×Nd), where it is assumedC(x) corresponds to a classical damping matrix; ü(t,x,y),
u̇(t,x,y) and u(t,x,y) are the acceleration, velocity and displacement vector (dimension Nd × 1);
and f(t,y) is the load vector (dimensionNd×1). As both structural matrices and load vector depend
on fuzzy variables, the structural response (e.g. displacement) also depends on these variables, i.e.
the fuzziness in the structural properties and load propagates to the structural response. However,
it should be noted that the membership function associated with the structural response cannot be
calculated analytically (for almost all cases of practical interest).
Assume the load vector f(t,y) models a periodic loading and that it is of interest to determine
the membership function associated with the steady-state displacement vector uP (t,x,y). Such
problem can be solved most conveniently using the frequency response function (FRF), as described
in the following. As the load vector is periodic, then it can be described as:

f(t,y) =

Nf∑
l=1

fl(y)eiωl(y)t (2)

where fl(y) denotes the amplitude of the load vector with associated frequency ωl(y); note both
the amplitude and frequency may be dependent on the fuzzy vector y. Then, the steady-state
displacement vector is equal to:

uP (t,x,y) =

Nf∑
l=1

H(ωl(y),x)fl(y)eiωl(y)t (3)

where H(ω,x) is the so-called frequency response function (FRF) of dimension Nd ×Nd, which is
defined as shown below (Craig and Kurdila, 2006).

H(ω,x) =

Nm∑
r=1

φr(x)φTr (x)

ωr(x)2 − ω2 + i2ξrωωr(x)
(4)
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In the above equation, Nm denotes the number of modes retained for dynamic analysis (Nm ≤ Nd),
ξr denotes the damping ratio associated with the r-th mode, while ωr(x) and φr(x) denote the
r-th natural frequency and r-th mode shape, respectively. The natural frequencies and mode shapes
are calculated by performing a dynamic structural analysis, which in this case involves solving the
following eigenvalue/eigenvector problem.(

K(x)− ω2
r (x)M(x)

)
φr(x) = 0, r = 1, . . . , Nm (5)

It is assumed that the mode shapes are orthonormal with respect to the mass matrix. The solution
of the above problem can be numerically demanding, particularly for structures which comprise a
large number of degrees-of-freedom.

2.2. α-Level Optimization

Recall the objective pursued is determining the membership function associated with the steady-
state displacement vector. A possible means for determining such membership function is applying
the so-called α-level optimization. In this manner, the membership function is represented in a
discrete way. This implies that the values the displacement vector may assume are calculated
at specific α-cuts, where α denotes the membership level under analysis (Beer, 2004); clearly,
0 < α ≤ 1.
For applying α-level optimization, assume a specific cut αk is selected and that the objective is
determining the membership function of the n-th DOF of displacement vector uP,n. This implies
that the variables associated with structural parameters and loads are contained within the intervals
xi,αk

, i = 1, . . . , Np and y
j,αk

, j = 1, . . . , Nl, respectively. Note that under the assumption that the

sets xi,αk
and y

j,αk
are compact and convex, these sets are fully described by their minimum and

maximum values (denoted with superscripts (·)L and (·)R, respectively, see Figure 1). As there is
a continuous mapping between the variables (x,y) and the output variable vector up (see Eq.(3)),
the set uP,n,αk

is also fully described by its minimum and maximum value (denoted with super-

scripts (·)L and (·)R, respectively, see Figure 1). These two extrema actually constitute two points
of the membership function µũP,n(uP,n) for the membership level αk. Note that for determining
the set uP,n,αk

, it is necessary to solve two optimization problems (Moens and Vandepitte, 2005),
i.e. minimization and maximization of the displacement given that the variables associated with
structural properties and loading belong to the interval defined by their respective α-cuts. In order
to visualize the α-level optimization strategy, Figure 1 contains a schematic representation where
it is assumed that Np = Nl = 1.
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Figure 1. Schematic Representation of Fuzzy Analysis Applying α-level Optimization.

As noted from the above discussion, the application of α-level optimization demands solving two
optimization problems (minimization and maximization) for each discrete α-cut being analyzed. For
problems of practical interest, the numerical costs associated with this procedure can be considerable
and even prohibitive, as it demands performing structural analyses for different values of the fuzzy
variables. In order to reduce the aforementioned numerical costs, this contribution introduces a
meta-model for the FRF function such that it can be evaluated with negligible effort. The details
of the meta-model are discussed in the next section.

3. Approximate Representation of the Frequency Response Function

3.1. First Approximation Level

The most demanding step for evaluating the FRF function is calculating the spectral properties
(i.e. natural frequencies and mode shapes). Therefore, in order to decrease the associated numerical
costs, it is proposed to use a meta-model for evaluating the FRF that includes approximations of
the spectral properties, as shown below.

H̃(ω,x) =

Nm∑
r=1

φ̃r(x)φ̃Tr (x)

ω̃r(x)2 − ω2 + i2ξrωω̃r(x)
(6)

In the above equation, H̃ denotes the approximate FRF, which is calculated using approximate
spectral properties ω̃r and φ̃r, r = 1, . . . , Nm.
The approximation proposed in Eq. (6) constitutes actually the first level of approximation of the
proposed strategy. This corresponds to approximating an intermediate quantity (see, e.g. Jensen,
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2000). This is an idea that has been used customarily in the field of structural optimization. Its
basis is the following: as the FRF is a highly nonlinear function, attempting to approximate it
explicitly in terms of the vector of structural parameters x would result quite challenging. In this
context, challenging implies that probably higher order terms would be required for producing a
sufficiently accurate approximation. In view of this issue, approximating an intermediate quantity is
much more convenient, as this quantity may behave more linearly with respect to x. In the context
of the proposed meta-model, the intermediate quantity is actually the set of spectral properties.

3.2. Second Approximation Level

For the actual implementation of the meta-model proposed in Eq. (6), it is necessary to compute
the approximate spectral properties. For approximating the mode shapes, it is proposed to apply
a first order Taylor expansion, i.e.:

φ̃r(x) = φr
(
x0
)

+

Np∑
i=1

∂φr
∂xi

∣∣∣∣
x=x0

(
xi − x0

i

)
(7)

where x0 is an expansion point.
For approximating the natural frequencies, a first order Taylor expansion is considered as well.
However, instead of formulating the expansion directly with respect to x, it is cast with respect
to intervening variables Ir,i(xi), i = 1, . . . , Np (Prasad, 1983). These intervening variables are
nonlinear functions with respect to xi. The advantage of considering this strategy is that the
quantity being approximated (in this case, the natural frequencies) behave more linearly with
respect to Ir,i(xi) than with respect to xi. Therefore, the approximation for the natural frequencies
is the following.

ω̃r(x) = ωr
(
x0
)

+

Np∑
i=1

∂ωr
∂Ir,i

∣∣∣∣
x=x0

(
Ir,i (xi)− Ir,i

(
x0
i

))
(8)

For the case of fuzzy static structural analysis, it has been showed the so-called exponential in-
tervening variable is most useful (Valdebenito et al., 2016). The exponential intervening variable
possesses the form:

Ir,i (xi) = x
cr,i
i (9)

where cr,i is a real constant. Thus, the approximation for the natural frequencies reduces to the
following expression.

ω̃r(x) = ωr
(
x0
)

+

Np∑
i=1

∂ωr
∂xi

∣∣∣∣
x=x0

(
x0
i

)1−cr,i
cr,i

(
(xi)

cr,i −
(
x0
i

)cr,i) (10)

In order to select the value of the constant cr,i, the following criterion is proposed: the second-order
derivatives of the exact natural frequency ωr and of the approximate frequency ω̃r should be equal
at the expansion point. In mathematical terms, this criterion reads as follows.

∂2ωr
∂x2

i

∣∣∣∣
x=x0

=
∂2ω̃r
∂x2

i

∣∣∣∣
x=x0

, i = 1, . . . , Np (11)
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216



Approximation Concepts for Fuzzy Analysis in Structural Dynamics

It can be shown that this criterion leads to the following expression for determining cr,i, i =
1, . . . , Np.

cr,i = 1 + x0
i

∂2ωr

∂x2i

∣∣∣
x=x0

∂ωr
∂xi

∣∣∣
x=x0

, i = 1, . . . , Np (12)

As the above equation may render values of cr,i which are too high in case the first derivative of
the natural frequency is close to zero, it is suggested to limit the values cr,i may adopt within the
range [−3, 3].

3.3. Sensitivity of Natural Frequencies and Mode Shapes

The practical implementation of the approximations described in Section 3.2 demands evaluating
the sensitivity of the spectral properties with respect to x. The latter is a problem which is the
subject of active research, see e.g. Lin and Lim, 1993. In particular, in this contribution, the
approach proposed by Nelson, 1976 is implemented. A salient feature of this approach is that
for calculating the sensitivity of the r-th natural frequency and mode shape, it requires only the
information related with that frequency and mode shape. This is most convenient from a numerical
viewpoint, as for large structural systems, usually Nm � Nd.
For presenting Nelson’s method, consider Eq. (5). After differentiating this equation with respect
to xi and pre-multiplication by φTr (x), it is possible to determine the following explicit expression
for the sensitivity of the natural frequency.

∂ωr(x)

∂xi
=

1

2ωr(x)
φTr (x)

(
∂K(x)

∂xi
− ω2

r (x)
∂M(x)

∂xi

)
φr(x) (13)

In order to determine the sensitivity of the mode shape, consider again consider Eq. (5). After
differentiating this equation with respect to xi and arranging terms, it is possible to find the
following expression.(
K(x)− ω2

r (x)M(x)
) ∂φr(x)

∂xi
= −

(
∂K(x)

∂xi
− ω2

r (x)
∂M(x)

∂xi

)
φr(x)+2ωr(x)

∂ωr(x)

∂xi
M(x)φr(x)

(14)
For the above equation, assume that matrix

(
K(x)− ω2

r (x)M(x)
)

is denoted as Gr and that all
terms of the right hand side are grouped in a vector gr,i. Then, the equation can be rewritten as
follows.

Gr
∂φr(x)

∂xi
= gr,i (15)

Note that Gr possesses rank Nd − 1 and nullspace φ(x). Therefore, the sought sensitivity of the
mode shape can be expressed as:

∂φr(x)

∂xi
= hr,i + γr,iφr(x) (16)

where hr,i is any vector which fulfillsGrhr,i = gr,i and γr,i is any real constant. In order to determine
hr,i and γr,i, the following procedure is proposed by Nelson, 1976.
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1. hr,i is determined by setting one of its component equal to some arbitrary value (e.g. equal to
1) and the other components are determined by solving the Nd − 1 equations associated with
Grhr,i = gr,i.

2. γr,i is determined by differentiating with respect to xi the equation that ensures orthonormal-
ity of the mode shapes with respect to the mass matrix. This criterion yields the following
expression for γr,i.

γr,i = −φTr (x)M(x)hr,i −
1

2
φTr (x)

∂M(x)

∂xi
φr(x) (17)

It should be noted that the procedure for determining the sensitivity of the spectral properties
proposed by Nelson, 1976 is valid whenever the natural frequencies are distinct. In case one or more
natural frequencies possess multiplicity larger than one, it is possible to extend Nelson’s method, as
discussed by Dailey, 1989. The way this extension operates is as follows: the sensitivities associated
with natural frequencies with multiplicity larger than 1 are calculated using eqs. (13) and (15), but
in a matrix form, i.e. instead of calculating one sensitivity, m sensitivities are calculated simulta-
neously, where m is the multiplicity of the repeated natural frequency. It should be noted that the
extension of Nelson’s method proposed by Dailey, 1989 produces the second order derivatives of
the natural frequencies as a byproduct. These second order derivatives are used to calculate the
constants cr,i associated with the intervening variables (see Eq. (12)).
The interested readership is referred to Nelson, 1976 and Dailey, 1989 for details on the procedure
for calculating the sensitivity of the spectral properties.

4. Subset Simulation for Optimization

The practical implementation of the α-level optimization approach demands applying an appro-
priate optimization algorithm for determining the extrema of the displacement function at each
α-cut. The solution of this optimization problem is most challenging, as it may present local
optima. In view of this challenge, this contribution applies Subset Simulation for optimization
(Li and Au, 2010). This is a gradient free optimization algorithm that applies stochastic search for
identifying the optimal solution.
Subset Simulation for optimization is applied following 5 steps. These steps are described briefly in
the following, assuming it is applied for solving a maximization problem. For a detailed description,
the reader is referred to Li and Au, 2010.

1. Introduce an instrumental probability density function (pdf) associated with the variables of
the problem (in this case, the vectors x and y). It is suggested that this instrumental pdf is set
as a truncated Gaussian distribution.

2. Generate N samples of the variables (x,y) and evaluate for each of these samples the displace-
ment of the structural system applying the meta-model for the FRF.

3. Select the pN samples of (x,y) which possess the largest associated displacement value. Note
0 < p < 1. The selected samples are termed as seed samples.
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4. Using the seed samples from the previous step and the modified Metropolis algorithm (see Au
and Beck, 2001), generate (1− p)N additional samples of (x,y) whose associated displacement
value is equal or larger than any of the values selected in the previous step.

5. Check whether or not the algorithm has converged to the optimum solution. This is performed
by assessing the standard deviation of the N samples of (x,y). In case convergence has been
achieved, select the sample with largest value of the displacement as the optimal solution.
Otherwise, return to step 3.

Figure 2 illustrates schematically the application of Subset Simulation for optimization. For sim-
plicity, it is considered that Np = Nl = 1. As noted from the Figure, first N = 10 samples of (x1, y1)
are generated, which are marked with white circles. From these samples, the 2 samples with largest
values of displacement are selected as seeds (p = 0.2). Then, using these 2 samples, 8 additional
samples are generated by means of the Metropolis algorithm (gray circles).

x1

y1

uP,n(x1, y1) = u1

uP,n(x1, y1) = u2

Figure 2. Schematic Representation of Subset Simulation for Optimization.

5. Example

In order to illustrate the application of the proposed strategy for fuzzy structural dynamic analysis,
the following example is analyzed, which is taken from Beer and Liebscher, 2008. It consists of a
steel beam which possesses distributed mass m and also a concentrated mass M , which is located at
a distance l from the left support. The beam is subjected to an harmonic load f(t,y), as illustrated
in Figure 3. The objective of the example is determining the membership function associated with
the maximum amplitude of the steady-state vertical displacement of the beam at the point where
the load is applied.
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l

L =12 m

M mm
f(t, y)

E, I

Figure 3. Steel beam subject to point load.

The fuzzy variables associated with the structural parameters of the problem are the position of
the concentrated mass l = x1 and the total mass MT = x2. Note the total mass is the summation of
the distributed mass and the concentrated mass, which are defined as m = MT /3 and M = 2MT /3.
The membership functions associated with x1 and x2 are shown in Figure 4.
The load is described as the superposition of two harmonic signals, i.e.:

f(t,y) = y1 cos(y2ω1t) + y1 cos(y2ω2t) (18)

where the frequencies are defined as ω1 = 44 [rad/s] and ω2 = 66 [rad/s]; and where y1 and y2

are fuzzy variables modeling the lack of knowledge on the amplitude and frequency of the loading,
respectively. Their membership functions are defined in Figure 4.

x2 × 103 [kg]x1 [m]
4.253.753.25

µx̃1
(x1)

1

0

y1 [kN]
10.2109.8

µỹ1(y1)

1

0

10.59.58.5

1

0

µx̃2
(x2)

y2
1.000.98

µỹ2(y2)

1

0
1.01

Figure 4. Membership functions of fuzzy variables.

The Young’s modulus of the beam is E = 210 [GPa] and its second moment of area is I =
1.5× 10−3 [m4]. It is assumed that damping is negligible. In order to solve the problem, the beam
model is discretized using 12 2D beam elements, which comprise a total of Nd = 23 degrees-of-
freedom.
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Figure 5 shows the results obtained for the problem in terms of the membership function of the
maximum amplitude of the steady-state vertical displacement of the beam at the point where the
load is applied. The membership function is calculated using the α-level optimization strategy for
a total of 11 α-cuts. Subset Simulation for optimization was used to determine the minimum and
maximum values of the displacement for each α-cut. Three different strategies were considered for
calculating the steady-state displacement.

1. In order to obtain reference results, the displacement was calculated exactly, i.e. a structural
analysis was carried out for each different value of the structural parameter vector x. The
obtained membership function is denoted as DO in Figure 5.

2. The proposed approach is used to calculated the displacement. This is denoted as P in Figure5.

3. The displacement is approximated considering a first order Taylor expansion of the natural
frequencies without considering intervening variables. This is denoted as T in Figure 5. The
objective of including this approximation is examining the advantages of including intervening
variables for approximating the natural frequencies.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

u [mm]

µ
ũ
(u
)

 

 

T

P

DO

Figure 5. Membership function of amplitude of steady-state vertical displacement.

As noted from Figure 5, the proposed approach is capable of reproducing accurately the sought
membership function. In this context, it should be noted that for applying the proposed approach, a
single structural analysis plus a sensitivity analysis are required. This is remarkable, as it is possible
to approximate the displacement with high quality and reduced numerical costs. In addition, it is
seen from the Figure that the approximation T fails in approximating the displacement accurately.
This result highlights the benefit of including intervening variables for approximating the natural
frequencies.
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6. Conclusions

This contribution has presented an approach for performing fuzzy structural analysis of linear
dynamical systems. The key issue of the proposed approach consists in introducing a meta-model
of the FRF which considers two different approximation levels. The results obtained in this con-
tribution suggest the proposed approach can produce accurate results with a reduced number of
structural analyses.
Although the results presented are most promising, further research efforts are required in order to
determine the precise range of application of the proposed approach.
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- An Interval Finite Element Approach
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Abstract: An analysis of the structural dynamic response under uncertainty is presented. Uncer-
tainties in load and material are modeled as intervals exploiting the interval finite element method
(IFEM). To reduce overestimation and increase the computational efficiency of the solution, we
do not solve the dynamic problem by an explicit step-by-step time integration scheme. Instead,
our approach solves for the structural variables in the whole time domain simultaneously by an
implicit scheme using discrete Fourier transform and its inverse (DFT and IDFT). Non-trivial initial
conditions are handled by modifying the right-hand side of the governing equation. To further
reduce overestimation, a new decomposition strategy is applied to the IFEM matrices, and both
primary and derived quantities are solved simultaneously. The final solution is obtained using an
iterative enclosure method, and in our numerical examples the exact solution is enclosed at minimal
computational cost.

Keywords: interval finite element method, dynamic response, discrete Fourier transform, matrix
decomposition, iterative enclosure method

1. Introduction

For any given physical system, uncertainties caused by measurement device or environmental condi-
tions in the data acquisition process causes inconsistencies between the estimated and actual system
behavior (Fernández-Mart́ınez et al., 2013). Thus it is necessary to model and track the propagation
of uncertainties in the system and to reliably evaluate the accuracy of the obtained solution.
Conventional treatment of uncertainties involves the probability theory (Lutes and Sarkani, 2004),
in which random variables are used to model the uncertainties encountered. In cases where enough
measurement data is available and sufficient to reliably predict the nature of the uncertainties,
probability approach is preferred. However, when there is not enough measurement data (Moens
and Hanss, 2011; Zhang, 2005), as an alternative, one can turn to other available non-probabilistic
approaches, such as Bayesian networks (Igusa et al., 2002; Soize, 2013; Unger and Könke, 2011),
fuzzy sets (Adhikari and Khodaparast, 2014; Dehghan et al., 2006; Erdogan and Bakir, 2013; Klir
and Wierman, 1999), evidence theory (Bai et al., 2013; Dempster, 1967; Jiang et al., 2013; Shafer,
1968), and intervals (Corliss et al., 2007; Do et al., 2014; Impollonia and Muscolino, 2011; Muhanna
et al., 2007). Here the interval approach is adopted, in which uncertainties are modeled by interval

c© 2016 by authors. Printed in Germany.

REC 2016 - N. Xiao, F. Fedele and R. Muhanna

225



N. Xiao, F. Fedele and R. Muhanna

numbers characterized by their respective lower and upper bounds. More discussions on intervals
and interval arithmetic can be found in Alefeld and Herzberger (1984), Kulisch and Miranker (1981),
and Moore et al. (2009).

In this paper, an interval-based approach for the analysis of structural dynamic problems in
the time domain is presented. In particular, the time-domain dynamics of elastic structures with
uncertain geometric and material properties are studied. Uncertain parameter of the structure are
modeled by intervals, and Interval Finite Element Method (IFEM) is implemented (Hu and Qiu,
2010; Qiu and Ni, 2010; To, 2012; Xia et al., 2010). The structure is governed by the following
interval differential equation in the time domain,

Ku + Cu̇ + Mü = f , (1)

where K, C, and M are respectively the stiffness, damping, and mass matrix of the structure,
u is the unknown nodal displacement vector, u̇ and ü are the corresponding nodal velocity and
acceleration vector, f is the time-varying nodal equivalent load. From now on, non-italic bold letters
are used to denote interval variables. The initial conditions are expressed in an interval form,

u(0) = u0, u̇(0) = v0, (2)

where u0 and v0 are the initial nodal displacement and velocity vector, respectively.
In practice, the differential Eq. (1) is solved at discrete time tk, which are usually uniformly

spaced in time. Conventional numerical integration approaches solve Eq. (1) recursively, viz. the
solution at the current time tk is obtained by using the solution in the previous time tk−1. One
notable example of the numerical integration method in structural analysis is the Newmark-β
method (De Borst et al., 2012; Dokainish and Subbaraj, 1989; Paz, 1997). However, such recursive
approach is not directly applicable for IFEM implementation, because overestimation due to interval
dependency accumulates, and the yielded interval enclosure quickly become excessively wide and
practically useless after a few iterations in time.

Alternatively, the transformation approach can be used (Bae et al., 2014; Yang et al., 2012).
In the current method, the Discrete Fourier Transform (DFT) approach is adopted. A brief in-
troduction on the DFT can be found in Santamarina and Fratta (2005). The governing Eq. (1)
is transformed into the frequency domain using DFT, and the computed response is expressed
back into the time domain using the corresponding inverse transform (Inverse Discrete Fourier
Transform, IDFT). As a result, the solution vector at all time steps are obtained simultaneously.

In the following sections, first the deterministic solver based on the DFT approach is presented.
Then the presented interval solver is introduced in detail. The governing Eq. (1) is reintroduced
into a fixed-point form, and an iterative approach is adopted to obtain a sharp interval enclosure of
the exact solution. Finally, the performance of the current method is compared with other available
methods in a few numerical example.
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2. Deterministic Dynamic Solver

In this section, the deterministic dynamic solver based on the DFT approach (Veletsos and Kumar,
1983; Veletsos and Ventura, 1985) is presented. The dynamic response of a linearly elastic structure
is studied, which, after FEM discretization, is governed by

Ku+ Cu̇+Mü = f, (3)

where K, C, and M are the stiffness, damping, and mass matrices of the structure, respectively, u
is the nodal displacement vector, u̇ and ü are the first and second derivatives of u with respect to
the time (or, equivalently, nodal velocity and acceleration), and f is the nodal equivalent load. The
initial condition is given by

u(0) = u0, u̇(0) = v0. (4)

The system is assumed discretized in time. The nodal equivalent load at discrete time tk is given,
and the goal is to solve for the nodal displacement vector u at tk, as well as its derivatives u̇ and
ü. That is, f(tk) = fk, u(tk) = uk, u̇(tk) = u̇k, ü(tk) = ük. Usually, the time steps are uniformly
spaced, viz. tk = k∆t. The sampling interval ∆t must be small enough to prevent any potential
aliasing (Santamarina and Fratta, 2005). Let T be the total time length of the signal and N the
total number, then T = N∆t.

In the discrete Fourier transform approach, DFT is applied to the discrete version of the
governing Eq. (3) and transform it into(

−ω2
jM + iωjC +K

)
Ft(u)j = Ft(f)j , (5)

where i =
√
−1 is the imaginary unit, ωj = j∆ω with ∆ω = 2π/T being the fundamental frequency,

Ft(u)j and Ft(f)j are the Fourier transform of the nodal displacement uk and equivalent load fk,
respectively. Then the nodal displacement vector in the time-domain is obtained by applying the
IDFT to Ft(u)j , viz.

un =
1

N

N−1∑
j=0

Ft(u)je
−i(2π/N)jn =

1

N

N−1∑
j=0

GjFt(f)je
−i(2π/N)jn, (6)

where Gj is the inverse of the effective stiffness matrix in Eq. (5). To ensure that the final solution
un is real, i.e., null imaginary part, Gj takes the following form,

Gj =

{(
−ω2

jM + iωjC +K
)−1

, 0 ≤ j < N/2;

conjugate of GN−j , N/2 ≤ j < N.
(7)

The above approach essentially solves for the stationary response of the structure caused by
periodic loads with period T . The results are identical to the actual dynamic response with trivial
initial conditions (u0 = v0 = 0) when enough zero-padding is attached. The length of the zero-
padding, Tp, can be estimated from

e−ζωTp < τerr, ⇒ Tp >
ln τerr
ζω

, (8)
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where τerr is the error tolerance, ω is the lowest natural frequency of the structure, and ζ is the
corresponding effective damping ratio. Let T0 be the length of the original signal, then T = T0 +Tp.

Non-trivial initial conditions can be modeled by modifying the equivalent load (Lee et al., 2005;
Liu et al., 2015; Mansur et al., 2000). For initial displacement u0, it is equivalent to add a constant
load fu0 = Ku0, which exist for the time interval T0 ≤ t < T . For initial velocity v0, it is equivalent
to add an impulse load fv0 = Mv0/∆t, at time t = 0 for a duration of time ∆t.

3. Interval Dynamic Solver

Assume the elastic structure under study contains uncertain parameters, which are modeled by
intervals. The structural system is governed by Eqs. (1) and (2). For simplicity, the Rayleigh
damping is adopted. The damping matrix

C = αdM + βdK, (9)

where αd and βd are the Rayleigh damping coefficients. To reduce overestimation due to interval
dependency, the interval matrix decomposition outlined before is adopted. Then DFT is used to
transform the governing equation into a fixed-point form, which is further solved by a new variant of
iterative enclosure method. Details on the current method are presented in the following subsections.

3.1. Interval matrix decomposition

The matrix decomposition strategy reduces overestimation due to interval dependency by avoiding
multiple occurrences of the same interval variable in the formulation. The stiffness matrix K, the
mass matrix M, and the stress-displacement matrix S are decomposed into

K = Adiag(Λα)AT , M = Amdiag(Λmαm)ATm, (10)

where A, Λ, Am, and Λm are deterministic matrices, α is the interval stiffness parameter vector
that accounts for uncertainties in the stiffness matrix K, and αm is the interval mass parameter
vector that accounts for uncertainties in the mass matrix M.

By combining the nodal equivalent load vector fk at different time steps tk, the interval load
matrix f is obtained, whose k -th column is fk. When the structure is subject to external loading
and the M -δ method is adopted (Muhanna and Mullen, 2001), f is decomposed into

f = Fδt, (11)

where F is a deterministic matrix, and δt is the time-varying load uncertainty matrix. Usually it
is necessary to distinguish the uncertainty in the magnitude of the load and the uncertainty in
the time-history of the load. Thus δt is further decomposed into an interval column vector δ and
an interval row vector dt, viz. δt = δdt, where δ models the uncertainties in the load magnitude
and dt models the uncertainties in the load time-history. Finally, the nodal equivalent load f is
decomposed into

f = (Fδ)dt. (12)
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Similarly, when the structure is subject to ground motion, f is decomposed into

f = −Ma = −Mqδt, (13)

where δt denotes the time-varying ground acceleration, a represents the resulting nodal acceleration
of the structure, and q relates δt to a, viz. a = qδt. By using the same decomposition for δt, and
noting Eq. (10),

f = −Amdiag(Λmαm)ATmqδdt = Am (Λmαm ◦Bfδ)dt, (14)

where Bf = −ATmq, and a ◦ b is the element-by-element Hadamard product of two vectors a and b.
When the initial conditions are non-trivial and modeled by intervals, as shown in Eq. (2), the

corresponding nodal equivalent load f is given by

f = Ku0du0 + Mv0dv0 , (15)

where du0 and dv0 are two deterministic row vectors. du0 is zero for the time interval 0 ≤ tk < T0

and unity for the time interval T0 ≤ tk < T , where T0 and T are the length of the original and
padded signal. dv0 represents an impulse load which is 1/∆t at tk = 0 and zero everywhere else.
Noting the decomposition in Eq. (10),

f = A
(
Λα ◦ATu0

)
du0 +Am

(
Λmαm ◦ATmv0

)
dv0 , (16)

which has a similar matrix form as Eq. (14). Thus the non-trivial initial conditions are treated in
the same manner as ground accelerations.

3.2. Interval governing equations

To solve the interval differential Eq. (1), following the DFT approach outlined in Section 2, the
equation is transformed into the frequency domain, viz.(

−ω2
jM + iωjC + K

)
Ft(u)j = Ft(f)j , (17)

where Ft(u)j and Ft(f)j are the Fourier transform of the nodal displacement uk and equivalent
load fk, respectively.

To include compatibility requirements and essential boundary conditions in the governing equa-
tion, and to ensure that the final solution has zero imaginary part, Eq. (17) is brought into the
following equivalent form, {

Keff,j CT

C 0

}{
Ft(u)j
Ft(λ)j

}
=

{
Ft(f)j

0

}
, (18)

where Keff,j is the effective stiffness matrix corresponding to the j -th frequency ωj , namely

Keff,j =

{
−ω2

jM + iωjC + K, 0 ≤ j < N/2;

conjugate of Keff,N−j , N/2 ≤ j < N,
(19)
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C is the constraint matrix that imposes compatibility requirements and essential boundary condi-
tions, and λk is the Lagrangian multiplier representing the internal forces and support reactions at
tk. By adopting the Rayleigh damping and the decomposition of K and M in Eq. (10), Keff,j can
be decomposed into

Keff,j = Aeff,jdiag (Λeffαeff)Beff, (20)

where Aeff,j is a deterministic matrix depending on the frequency ωj ,

Aeff,j =

{{
(1 + ibωk)A (−ω2

k + iaωk)Am
}
, 0 ≤ j < N/2;

conjugate of Aeff,N−j , N/2 ≤ j < N,
(21)

and Λeff, Beff, and αeff are time-invariant variables,

Λeff =

{
Λ 0
0 Λm

}
, Beff =

{
AT

ATm

}
, αeff =

{
α
αm

}
. (22)

Suppose the structure is subject to external loading, then

Ft(f)j = Ft(Fδdt)j = FδFt(dt)j . (23)

Then Eq. (18) is equivalent to the following decomposed form{
Keff,j0 CT

C 0

}{
Ft(u)j
Ft(λ)j

}
=

{
F
0

}
δFt(dt)j −

{
Aeff,j

0

}
diag

(
BeffFt(u)j

)
Λeff∆αeff, (24)

by using the decomposition in Eqs. (20) and (23) and the following identities

Aeff,jdiag (Λeffαeff)BeffFt(u)j = Aeff,j

(
Λeffαeff ◦BeffFt(u)j

)
(25)

= Aeff,jdiag
(
BeffFt(u)j

)
Λeffαeff,

where ∆αeff is the difference between αeff and the reference vector αeff0, viz. ∆αeff = αeff − αeff0,
and Keff,j0 = Aeff,jdiag(Λeffαeff0)Beff.

When the structure is subject to ground motion, according to Eq. (14),

Ft(f)j = Af (Λmαm ◦Bfδ)Ft(dt)j
=
(
Af (Λmαm0 ◦Bfδ) +Af (Λm∆αm ◦Bfδ)

)
Ft(dt)j (26)

= F0δFt(dt)j +Afdiag
(
BfδFt(dt)j

)
Λm∆αm,

where ∆αm is the difference between αm and the reference vector αm0, viz. ∆αm = αm − αm0,
and F0 = Afdiag(Λmαm0)Bf . Then the generalized equivalent load in Eq. (18) is decomposed into{

Ft(f)j
0

}
=

{
F0

0

}
δFt(dt)j +

{
Af
0

}
diag

(
BfδFt(dt)j

)
Λm∆αm, (27)
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Eq. (18) is equivalent to the following decomposed form{
Keff,j0 CT

C 0

}{
Ft(u)j
Ft(λ)j

}
=

{
F0

0

}
δFt(dt)j (28)

−
{
Aeff Af
0 0

}
diag

({
BeffFt(u)j
−BfδFt(dt)j

}){
Λeff

0 Λm

}
∆αeff.

Due to the similarities between the decomposition of the equivalent load in Eqs. (14) and (16), the
above formulation can be extended to cases when the initial conditions are non-trivial.

3.3. Iterative enclosure method

To solve the interval linear system Eqs. (24) and (28), they are recast into the following form

Kg,jFt(ug)j = FgδFt(dt)j −Ag,jdiag
(
Ft(vg)j

)
Λg∆αeff, (29)

where Kg,j , Fg, Ag,j , Λg are given deterministic matrices, ug is the unknown interval vector, δ,
dt, and ∆αeff are given interval vectors, and vg linearly depend on ug, viz. vg = v0 +Bgug. Here
subscripts j denotes variables associated with the j -th frequency ωj . Note that matrices Kg,j and
Ag,j are functions of the frequency ωj . In the most general case, ug includes u and λ, and the
auxiliary variable vg includes Beffu, −Bfδdt, and ATs u.

Now introduce Gj = K−1
g,j . Multiplying both sides of Eq. (29) by Gj yields

Ft(ug)j = (GjFg)δFt(dt)j − (GjAg,j)diag
(
Ft(vg)j

)
Λg∆αeff. (30)

Then ug is obtained by applying the IDFT to both side of (30),

ug,k =
(
F−1
t (GjFg) ∗ dt

)
k
δ −

(
F−1
t (GjAg,j) ∗ diag(vg)

)
k
Λg∆αeff, (31)

where (a∗b)k denotes the convolution between two discrete signals ak and bk. Eq. (31) can be recast
into the following summation form,

ug,k =

(
N−1∑
l=0

F−1
t (GjFg)k−ldt,l

)
δ −

(
N−1∑
l=0

F−1
t (GjAg,j)k−ldiag(vg,l)

)
Λg∆αeff. (32)

Then a fixed-point form for vg,k is obtained as

vg,k = v0,k +Bg

(
F−1
t (GjFg) ∗ dt

)
k
δ −Bg

(
F−1
t (GjAg,j) ∗ diag(vg)

)
k
Λg∆αeff. (33)

A guaranteed outer enclosure for vg,k is obtained by iteratively using Eq. (33), starting from the

trivial initial guess v1
g,k = v0,k +

(
F−1
t (GjFg) ∗ dt

)
k
δ. The iteration stops when no improvement in

vjg,k is observed for two consecutive iterations, and the converged solution is denoted as vng,k. Then

the outer solution uoutg,k is obtained by substituting vg,k in Eq. (31) with the converged solution vng,k.
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The convolution between a deterministic signal and an interval signal is computed multiple times,
as shown in Eqs. (31) and (33). To increase the computational efficiency and reduce overestimation
in the final solution, the FFT-based fast interval convolution algorithm, proposed by Liu and
Kreinovich (2010), is adopted. During the iteration in Eq. (33), only the radius of vg is updated.
All other vectors and matrices do not change after the first iteration.

4. Numerical Examples

The current IFEM algorithm is implemented using the interval MATLAB toolbox INTLAB (Rump,
1999). Interval enclosures of the structural responses of the following sample problems are calcu-
lated: i) a four-story rigid frame and ii) a simply supported truss. The performance of the current
method is compared against other available methods in the literature: i) the endpoint combination
method (EC) and ii) the Monte Carlo (MC) simulation. The results shows that the current method
is applicable to the transient analysis of structural dynamic problems with uncertain parameters.
Guaranteed interval enclosures of the exact structural responses in the time domain are obtained
with small overestimations. In addition, the computational time is negligible when compared with
other competing methods.

4.1. Four-story rigid frame

The first example is a four-story frame shown in Figure 1. The floors of the frame are assumed to be
rigid enough to model the structure as an equivalent spring-mass system (shown in the right-hand
side of Figure 1). The mass mj and the inter-story shear stiffness kj of each floor (j = 1, . . . , 4) are
modeled by independent interval variables, and given in Table I.
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Figure 1. A four-story rigid frame and the equivalent spring-mass system.
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Consider the structural response of the frame under a concentrated impact force acting on the
top floor. The force has a duration of 4 s, and its variation during that time is deterministic, viz.

f(t) =

{
P sin(πt/2), 0 ≤ t ≤ 4 s;
0, t > 4 s,

(34)

where P = [0.99, 1.01] kN (2% uncertainty in the magnitude of the load). The damping matrix
C = 0.5M + 5× 10−3K. The sampling rate is 100 Hz, so the sampling interval ∆t = 0.01 s.

Figure 2 compares the lower and upper bounds of u4 for the first 10 s, obtained from the current
method (IS, solid lines), Monte Carlo predictions (MC, dashed lines) from an ensemble of 10,000
simulations, the reference solution obtained from endpoint combination (EC, dash-dotted lines),
and the deterministic solution (DS, dotted line). Note that IS always contains the reference solution
EC, and MC is always contained by EC. In addition, the overestimation level of the current method

Table I. Interval mass and stiffness for the five-story rigid frame of Figure 1,
including 1% uncertainties in mass, and 5% uncertainties in stiffness.

Floor Mass (kg) Stiffness (kN/m)

mj mid mj rad mj kj mid kj rad kj

1 [5.416, 5.470] 5.443 0.027 [1.180, 1.240] 1.210 0.030

2 [5.416, 5.470] 5.443 0.027 [1.677, 1.763] 1.720 0.043

3 [5.416, 5.470] 5.443 0.027 [1.862, 1.958] 1.910 0.048

4 [5.416, 5.470] 5.443 0.027 [1.775, 1.865] 1.820 0.045
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Figure 2. Lower and upper bounds of the nodal displacement u4 for the four-story frame of Figure 1 under a sinusoidal
force: IS (solid lines) from the current method, EC (dashed lines), and MC (dash-dotted lines) from an ensemble
of 10,000 simulations. Material uncertainty is 1% for mass, and 5% for stiffness. Load uncertainty is 2% for the
magnitude.
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slightly increases as the time increases. The MC solution is obtained using the DFT approach, which
indistinguishable from the solution obtained from a recursive Newmark-β method.

Then the concentrated force f(t) is removed, and the structure is subject to non-trivial initial
conditions. Figure 3 shows the nodal displacement u4 at the top floor for the first 10 s with non-
trivial initial nodal displacement u0 (top) and nodal velocity v0 (bottom), respectively. Here 2%
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Figure 3. Lower and upper bounds of the nodal displacement u4 for the four-story frame of Figure 1 under non-trivial
initial conditions: (top) non-trivial initial displacement u0, (bottom) non-trivial initial velocity v0. IS (black solid
lines) from the current method, EC (blue dashed lines), and MC (red dash-dotted lines) from an ensemble of 10,000
simulations. Material uncertainty is 1% for mass, and 5% for stiffness. Uncertainty in the initial condition is 2% (see
online version for colors).
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uncertainty is considered for u0 and v0, viz.

u0 =
{

0 0 0 0 [0.99, 1.01]
}T × 10−3 m; (35)

v0 =
{

0 0 0 0 [0.99, 1.01]
}T × 10−2 m/s.

Figure 3 shows that the high frequency components dissipate quickly. After about 3 s, the
response of the structure is dominated by the lowest frequency vibration. Observe that the perfor-
mance of the current method is the same as in the previous case. The obtained interval solution
guarantees to enclose the reference solution (endpoint combination, EC), and the overestima-
tion level increases slightly as the time increases. Thus non-trivial initial conditions are handled
successfully.

4.2. Simply supported truss

The second example is a simply supported symmetric truss composed of 15 bars, as shown in
Figure 4. The joints are labeled from 1 to 8, and the bars are labeled from 1 to 15. Time-varying
concentrated load P acts at joint 5. Bars 1 to 3, 13 to 15 have the same cross section area A = 1.0×
10−3 m2, and all other bars, viz. bars 4 to 12, have smaller cross section area A = 6.0×10−4 m2. All
the bars are made of steel. They have the interval mass density ρ with midpoint value ρ = 7.8×103

kg/m3, and the interval Young’s modulus E with midpoint value E = 200 GPa.
Fifteen bar elements are used to model the truss in Figure 4. Element mass density ρ and

Young’s modulus E are assumed independent, and they are modeled by 30 interval variables. The
midpoint of the load P is a sinusoid with a frequency of 50 Hz and an amplitude of 200 kN, viz.

P = 200 sin(100πt) kN. (36)

The damping matrix C = 20M + 3× 10−5K. The sampling rate is 10 kHz, so ∆t = 1× 10−4 s.
Then vertical displacement v5 at joint 5 is selected for comparison among the various methods

mentioned previously. Consider 1% uncertainty for the magnitude and time-history of the load,
as well as Young’s modulus and mass density of each bar. Figure 5 plots the lower and upper
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Figure 4. A simply supported symmetric truss subject to concentrated force.
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bounds of v5 for the first 0.1 s obtained from the current method (IS, solid lines) and the Monte
Carlo predictions (MC, dashed lines from the Newmark-β approach, and dash-dotted lines from the
DFT approach) from an ensemble of 100,000 simulations. Observe that the current method obtains
guaranteed enclosures of the MC prediction.

Figure 5 shows that the uncertainties in the structural responses increase significantly over time.
This behavior is due to the fact that the load history uncertainties are modeled by independently
varied intervals at different time steps. In the current example, this means 0.1 s × 10 kHz = 1,000
independent interval variables. As a result, the overall uncertainty level is much higher than 1%. This
also explains the growing differences between IS and MC predictions over time. Figure 6 considers
(top) 2% uncertainties in load time-history and (bottom) 2% uncertainties in load magnitude,
Young’s modulus, and mass density. Observe that in the bottom subplot, the uncertainties now do
not increase over time, and the difference between IS and MC is much smaller than to top subplot.
So it is indeed the increased number of interval variables that caused the increased uncertainty and
the difference between IS and MC.

5. Conclusion

An interval finite element formulation is presented for the time-domain dynamic analysis of elastic
structures with uncertain geometric and material properties. By using the Discrete Fourier Trans-
form (DFT) and the Inverse Discrete Fourier Transform (IDFT), the given equivalent load and the
final obtained structural responses are both given in the time domain, but the matrix inversion
process is performed in the frequency domain. Ground motion and non-trivial initial conditions
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Figure 5. Lower and upper bounds of the nodal displacement v5 at joint 5 for the four-story frame of Figure 4 under
external loads: IS (black solid lines) from the current method and MC predictions (blue dashed lines and red dotted
lines) from an ensemble of 100,000 simulations. Parameter uncertainties are 1% for load magnitude, load history,
Young’s modulus, and mass density (see online version for colors).
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are successfully handled via the introduction of the corresponding equivalent nodal forces. The
resulting method is both efficient and widely applicable.

Uncertain parameters of the structure are modeled as intervals. The obtained interval enclosures
guarantee to enclose the exact solution set with small overestimation, even for large uncertainty
levels. Numerical examples show that the presented method gives guaranteed sharp bounds on
the dynamic responses of the structure, even in cases when a large number of interval variables are
present and other available methods give over-optimistic prediction on the lower and upper bounds.
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Figure 6. Lower and upper bounds of the nodal displacement v5 at joint 5 for the four-story frame of Figure 4 with:
(top) 2% uncertainty only in load history; (bottom) 2% uncertainties in load magnitude, Young’s modulus, and mass
density. IS (black solid lines) from the current method and MC predictions (blue dashed lines and red dotted lines)
from an ensemble of 100,000 simulations (see online version for colors).
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Abstract: The engineering demand for more realistic and accurate models involving interval
uncertainties lead to a new interval model of equilibrium equations in mechanics, which is based on
the algebraic completion of classical interval arithmetic called Kaucher arithmetic. The proposed
approach replaces straightforward a deterministic model by an interval model in terms of proper
and improper intervals, fully conforms to the equilibrium principle and provides sharper enclosure
of the unknown quantities than the best known methods based on classical interval arithmetic.
The paper presents the interval algebraic approach to equilibrium equations and demonstrates its
applications to various practical problems.

Keywords: force equilibrium, modeling structures, interval arithmetic, proper and improper in-
tervals

1. Introduction

The basic principle of static (or dynamic) equilibrium under general force systems is an essential pre-
requisite for many branches of engineering, such as mechanical, civil, aeronautical, bioengineering,
robotics, and others that address the various consequences of forces, (Beer et al., 2010).

One main challenge for the models involving interval uncertainty is the overestimation of the
system response. Nowadays, the most successful approaches for overestimation reduction are those
that relate the dependency of interval quantities to the physics of the problem being considered,
(Muhanna et al., 2013). Recently, a model of a bar subjected to multiple axial external loads, where
load magnitudes are represented by intervals, is considered in (Elishakoff et al., 2015). Although the
aim at providing interval model conforming to the principle of static equilibrium is not completely
achieved by the proposed model, the paper demonstrates what are the challenges in this non-trivial
task. A similar problem in the context of robotics is discussed in the IEEE P1788 working group on
standardization of interval arithmetic, (Mazandarani, 2015). It is shown in (Elishakoff et al., 2015),
(Mazandarani, 2015) that an interval model based entirely on the classical interval arithmetic, in
its set-theoretic interpretation as proposed by Moore (1966), cannot provide a good estimation of
the unknown quantities involved in interval equilibrium equations.

The demand for more accurate models involving interval uncertainties lead to an interval model
of equilibrium equations in mechanics (Popova, 2016a), which is based on the algebraic completion of
classical interval arithmetic, called also Kaucher or generalized interval arithmetic. It is proven that
the proposed interval model always yields the narrowest interval enclosure and is in full conformance
with the physical meaning of static equilibrium. The work (Popova, 2016a) is focused on justification

c© 2016 by authors. Printed in Germany.
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of the proposed interval model in one dimension, comparison to the approach of (Elishakoff et al.,
2015), and applications to computing resultant forces. A next paper (Popova, 2016b) further devel-
ops the interval algebraic approach to models involving interval equilibrium equations by considering
models of practical applications which reduce to systems of interval equilibrium equations where
the number of the unknowns is equal to the number of the equations. The initial interval model is
expanded by considering interval algebraic solution to the system of equilibrium equations, model
properties are revealed and the quality of the interval algebraic solution is compared to the best
interval solution enclosure obtained by classical interval arithmetic. The present paper summarizes
all achieved by now and continues the applications of the model to problems where the number of
equilibrium equations is less than the number of the involved unknown quantities.

The structure of the present paper is as follows. In the next section some basic notions and
properties of the algebraic extension (Kaucher, 1980) of classical interval arithmetic are summarized.
In Section 3 we present the new interval model, its generalization to systems of interval equilibrium
equations involving as many unknowns as the number of the equations, and a methodology how to
apply the interval algebraic approach when the number of equilibrium equations is less than the
number of the involved unknown quantities. Numerical applications developed in details in Sections
4 and 5 illustrate the proposed interval algebraic approach, its conformance to the equilibrium
principle, bring out its effectiveness and advantages over the approach based on classical interval
arithmetic. Section 5 demonstrates the hybrid interval approach on a frame model example. The
article ends by some conclusions.

2. The Algebraic Completion of IR

The set of classical compact intervals IR = {[a−, a+] | a−, a+ ∈ R, a− ≤ a+}, called also proper
intervals, is extended in (Kaucher, 1980) by the set IR := {[a−, a+] | a−, a+ ∈ R, a− ≥ a+}
of improper intervals obtaining thus the set KR = IR

⋃

IR = {[a−, a+] | a−, a+ ∈ R} of all
ordered couples of real numbers called generalized (extended or Kaucher) intervals. For a better
understanding we denote the classical intervals by bold face letters (e.g., a) and the intervals from
KR by brackets (e.g., [a]). Of course, a ∈ IR ⊂ KR, and thus [b] = a ∈ KR is a correct assignment.
The inclusion order relation between classical intervals ⊆, ≤ is generalized for [a], [b] ∈ KR by
[a] ⊆ [b] ⇐⇒ b− ≤ a− and a+ ≤ b+. Denote T := {[a] ∈ KR | [a] = [0, 0] or a−a+ < 0}. For
[a] = [a−, a+] ∈ KR and [b] ∈ KR \ T , define binary variables direction (τ) and “sign” (σ) by

τ([a]) :=

{

+ if a− ≤ a+,
− if a− > a+;

σ([a]) :=

{

+ if pro ([a])− ≥ 0,
− otherwise.

All elements of KR with positive direction are called proper intervals and the elements with negative
direction are called improper intervals. An element-to-element symmetry between proper and im-
proper intervals is expressed by the “Dual” operator. For [a] = [a−, a+] ∈ KR, Dual([a]) := [a+, a−].
For [a], [b] ∈ KR,

Dual(Dual([a])) = [a], (1)

Dual([a] ◦ [b]) = Dual([a]) ◦Dual([b]), ◦ ∈ {+,−,×, /}. (2)
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Define proper projection of a generalized interval [a] onto IR by

pro([a]) :=

{

[a] if τ([a]) = +,
Dual([a]) if τ([a]) = −.

The conventional interval arithmetic and lattice operations, as well as other interval functions are
isomorphically extended onto the whole set KR, (Kaucher, 1980). Thus,

[a] + [b] = [a− + b−, a+ + b+] for [a], [b] ∈ KR,

[a]× [b] =























[a−σ([b]b−σ([a]), aσ([b]bσ([a])] if [a], [b] ∈ KR \ T
[aσ([a]τ([b])b−σ([a]), aσ([a]τ([b]bσ([a])] if [a] ∈ KR \ T , [b] ∈ T
[a−σ([b]bσ([b])τ([a]), aσ([b])bσ([b])τ([a])] if [a] ∈ T , [b] ∈ KR \ T
[ min{a−b+, a+b−},max{a−b−, a+b+}] if [a], [b] ∈ T , τ([a]) = τ([b])
0 if [a], [b] ∈ T , τ([a]) 6= τ([b]),

wherein ++ = −− = +, +− = −+ = −. Interval subtraction and division can be expressed as
composite operations, [a]− [b] = [a]+(−1)[b] and [a]/[b] = [a]×(1/[b]), where 1/[b] = [1/b+, 1/b−] if
[b] ∈ KR \ T . The restrictions of the arithmetic operations to proper intervals produce the familiar
operations in the conventional interval space.

The generalized interval arithmetic structure possesses group properties with respect to the
operations addition and multiplication. For [a] ∈ KR, [b] ∈ KR \ T ,

[a]−Dual([a]) = 0, [b]/Dual([b]) = 1. (3)

The complete set of conditionally distributive relations for multiplication and addition of generalized
intervals can be found in (Popova, 1998), (Popova, 2001). Here we present only one that will be
used. For [a], [b], [s] = ([a] + [b]) ∈ KR \ T , [c] ∈ KR

([a] + [b])[c]σ([s]) = [a]σ([a]) + [b]σ([b]), (4)

wherein [a]+ = [a], [a]− = Dual([a]). Addition operation in KR is commutative and associative;
associativity does not hold true in (interval) floating point arithmetic. Lattice operations are closed
with respect to the inclusion relation; handling of norm and metric are very similar to norm and
metric in linear spaces, (Kaucher, 1980). Some other properties and applications of generalized
interval arithmetic can be found in (Kaucher, 1980), (Markov et al., 1996), (Popova, 1998), (Popova,
2001), (Popova and Ullrich, 1996), (Shary, 2002) and the references given therein.

For a ∈ IR \ T , define Abs (a) = {a if 0 ≤ a;−a otherwise }. Relative diameter of a ∈ IR is
defined as a+− a− if 0 ∈ a and (a+− a−)/min{|a−|, |a+|} otherwise. For a ⊆ b, the percentage by
which b overestimates a is defined by

100(1− ω(a))/ω(b), ω(a) := a+ − a−.
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3. Interval Model of Equilibrium Equations

In this section the algebraic approach to equilibrium equations in mechanics is derived by consid-
ering two-dimensional problems involving several forces acting on a particle. The same approach
with obvious modifications is applicable to three-dimensional problems and problems whose models
involve other vector physical quantities possessing magnitude and direction such as velocities,
accelerations, or momenta. Such problems will be illustrated in the next section. In the text of this
paper forces (and other vector quantities) are denoted by underlining the letter used to represent
it. This is necessary in order to distinguish vectors from the proper intervals, which are denoted by
bold-face letters, and from the real-valued scalars. The magnitude of a vector will be denoted by
the corresponding italic-face letter.

In the deterministic case of two- dimensional problems involving several forces, the determination
of their resultant R is best carried out by first resolving each force into rectangular components.
Choosing a rectangular coordinate system (Oxy), with unit vectors i, j, any force vector F can be
resolved into rectangular components F x = Fxi, and F y = Fyj, so that F = Fxi+ Fyj. The scalar
component Fx is positive when the vector component F x has the same direction as the unit vector i
(i.e., the same direction as the positive x axis) and is negative when F x has the opposite direction. A
similar conclusion may be drawn regarding the sign of the scalar component Fy. Denoting by F the
magnitude of the force F and by θ the angle between F and the axis x, measured counterclockwise
from the positive axis, we may express the scalar components of F as follows: Fx = F cos(θ) and
Fy = F sin(θ), cf. any textbook in statics, e.g., (Beer et al., 2010). When more than one force act
on a particle (or a rigid body), it is important to determine the resultant force, i.e., the single
force R which has the same effect on the particle as the given forces. The resultant force R can be
determined by:

1. choosing a rectangular coordinate system;

2. resolving the given forces into their rectangular components;

3. each scalar component Rx, Ry of the resultant R of several forces F i acting on a particle is
obtained by adding algebraically the corresponding scalar components of the given forces. That
is, Rx =

∑

i Fx,i, Ry =
∑

i Fy,i, which gives R = Rxi+Ryj.

Basing on the above, the one dimensional interval algebraic model for computing the resultant
force (and reaction), developed in (Popova, 2016a), can be applied to two- and three-dimensional
problems involving vector physical quantities.

Theorem 1. (Popova, 2016a) Consider a bar subjected to a finite number of loads p
1
, . . . , p

k
that

may be applied in opposite directions and have uncertain magnitude p1 ∈ p1, . . . , pk ∈ pk, pi ≥ 0,
i = 1, . . . , k. Assume that a coordinate system (Ox) is chosen. Then,

(i) for every j, 1 ≤ j ≤ k, we have [Nj ] =
∑j

i=1[pi], wherein

[pi] =

{

pi if the direction of p
i
is in the positive x axis

−Dual(pi) if the direction of p
i
is opposite to the positive x axis ,

and [r] = −Dual([Nk]) = −Dual(
∑k

i=1[pi]).
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(ii) The interpretation of [Nj ] ∈ KR, 1 ≤ j ≤ k, and similarly of [r], is as follows.

• If [Nj ] ∈ T , then N j may have positive or negative direction and its magnitude varies in
pro([Nj ]).

• If [Nj ] ∈ KR \ T , the magnitude of N j varies in Abs( pro ([Nj])), while the direction of
N j coincides with the sign of [Nj ] (if [Nj ] ≥ 0 the direction of N j is the positive x axis,
otherwise it is opposite to the positive x axis).

Strong proof that Theorem 1 provides sharpest estimation of the resultant force and its reaction is
given in (Popova, 2016a) along with a detailed discussion and examples.

Now we consider the interval algebraic model of equilibrium equations from a more general
perspective. Assume that there is a deterministic model described by some equilibrium equation(s)
that involve uncertain parameters varying within given proper intervals. Clearly, the unknowns in
this model will be also uncertain and we search for proper intervals that are the sharpest interval
estimations of these unknowns and that conform to the physics of the problem (statics or dynamic
equilibrium). Conformance to static (dynamic) equilibrium means that the intervals found for
the unknowns when replaced in the equation(s) and all operations are performed results in true
equality(ies).

Definition 1. (Ratschek and Sauer, 1982) Interval algebraic solution to a (system of) interval
equation(s) is an interval (interval vector) which substituted in the equation(s) and performing
all interval operations in exact arithmetic1 results in valid equality(ies).

Interval algebraic solutions do not exist in general in classical interval arithmetic (Ratschek and
Sauer, 1982). Generalized interval arithmetic on proper and improper intervals (KR,+,×,⊆) is
the natural arithmetic for finding algebraic solutions to interval equations since it is obtained from
the arithmetic for classical intervals (IR,+,−,×, /,⊆) via an algebraic completion. This is another
justification of the proposed interval algebraic approach. Therefore, we embed the initial problem
formulation in the interval space (KR,+×,⊆), find an algebraic solution (if exists) and interpret the
obtained generalized intervals back in the initial interval space IR. This is a three steps procedure
summarized below.

1. The representation convention for a model involving interval forces (and/or other physical
quantities considered as vectors and possessing magnitude and direction) is:

− a scalar force component Fx (Fy, Fz) involving any kind of uncertainty is represented by
proper interval Fx (Fy, Fz) if the force component F x (F y, F z) has the same direction as
the positive x (y, z) coordinate axis;

− a scalar force component Fx (Fy, Fz) involving any kind of uncertainty is represented by
the improper interval Dual(Fx) (Dual(Fy), Dual(Fz)) if the force component F x (F y, F z)
has opposite direction to the corresponding positive x (y, z) coordinate axis.

1 no round-off errors
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2. Computing. Find the algebraic solution for the unknown(s) in (KR,+,×,⊆). Conditions
for existence of algebraic solution of interval linear equations are published in (Popova, 1998),
(Shary, 2002). Numerical methods finding the algebraic solution to an interval linear system
are discussed in (Markov et al., 1996), (Shary, 2002). For small systems, the approach based on
equivalent algebraic transformations is transparent and will be used in this paper.

3. Interpretation of the obtained generalized intervals in the initial space IR is done according
to the physics of the unknowns. If it is a force component, then Theorem 1 ii) is applied. In
general the interpretation projects the generalized interval solution on IR.

Since computing a resultant R of several forces F i can be represented as a solution of the
equilibrium equation

∑

i F i−R = 0, Theorem 1 is a special case of the above more general interval
algebraic approach.

If the deterministic model involves more unknowns than the number of equilibrium equations,
other relations are obtained from the information contained in the statement of the problem. In this
case the following hybrid approach should be applied. Let the number of the equilibrium equations
be k and the number of the unknown quantities be n, n > k. From the statement of the problem
we find n− k additional relations involving (some of) the unknowns.

a. If the n − k additional relations involve n − k of the n unknowns, by methods of classical
interval analysis find interval estimations of these n− k unknowns. Then replace the obtained
interval estimations in the interval model of the equilibrium equations and find the algebraic
solution with respect to the remaining k unknowns.

b. Let n − k additional relations involve n − k + q of the unknowns. We consider q of the k
equilibrium equations together with the n − k additional relations in a way that the system
involves n− k + q unknowns. Then the process continues as in a. above.

This approach ensures that the unknown uncertain quantities are estimated in a way that the
equilibrium equations are satisfied to a highest extent that corresponds to the initial uncertainties.
Next two sections illustrate the proposed interval algebraic approach.

4. Numerical Applications

Here we consider models of practical applications which illustrate the application of interval alge-
braic approach to equilibrium equations and its properties. In order to avoid many technical details
that will hamper the comprehension, no more than two dimensional problems are considered. The

numerical results presented in this section are obtained by the Mathematicar package directed.m
(Popova and Ullrich, 1996). JInterval library (Nadezhin and Zhilin, 2014) can be used for this
purpose, too.

Example 1. Three horizontal forces are applied, as shown in Figure 1, to a vertical cast iron arm.
Assume that the distances shown in Figure 1 are measured with 1% uncertainty. Determine the
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Figure 1. Horizontal forces applied to a vertical cast iron arm.

resultant of the forces, which are measured with 5% uncertainty, and the distance from the ground
to its line of action when F2 = 700N, F3 = 150N, and a) F1 = 300N, b) F1 = 550N, c) F1 = 1200N.

With a standard coordinate system, applying the representation convention, for the resultant
force R we have

[R] = F1 −Dual(F2) + F3.

The computation results in2

[R] =







[−237.5001,−262.4999] if a)
[− 2.27× 10−13, 2.27× 10−13] if b)
[617.5000, 682.5001] if c).

According to the interpretation convention the resultant force has magnitude R = Abs(pro([R]))
and its direction is determined by the sign of [R]. That is, in case a) the magnitude varies in
[237.5001, 262.4999]N, the direction is opposite to the direction of F 1; in case b) the tiny fluctuations
around zero are due to round-off errors and therefore the forces are in equilibrium (R = 0N); in case
c) the magnitude varies in [617.5000, 682.5001]N and the direction of the resultant force coincides
with the direction of F 1 .

For the moment M (and positive direction pointing the positive y coordinate axis) the repre-
sentation convention gives

[M ] = −Dual(F1d1) + F2d2 −Dual(F3d3),

wherein d1 ∈ [0.6∓ 6× 10−3], d2 ∈ [0.4∓ 4× 10−3], d3 ∈ [0.2∓ 2× 10−3]. The computation results
in

[M ] =







[65.8349, 74.2351] if a)
[− 75.2340,−84.8400] if b)
[− 442.0351,−498.4349] if c).

According to the interpretation convention the moment M has the following magnitude M and
direction. In case a) the magnitude is [65.8349, 74.2351]N.m and the direction points to the positive
y axis; in case b) the magnitude is [75.2340, 84.8400]N.m and direction pointing opposite to the
positive y axis; in case c) M = [442.0351, 498.4349]N.m and the direction points opposite to the
positive y axis.

2 All computed numerical intervals are outwardly rounded to the intervals presented in the paper.
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Then, the distance is d = M/R which gives da ∈ [0.2508, 0.3126]m in case a); db = ∞ in case
b); and dc ∈ [0.6476, 0.8072]m in case c).

Next example demonstrates the interval algebraic approach applied to systems of equilibrium
equations where the number of the unknowns is equal to the number of the equations.

Example 2. (Popova, 2016b) A [100± 1] kg crate is suspended from a pulley that can roll freely
on the support cable ACB and is pulled at a constant speed by cable CD, as shown in Figure 2. If
α = 30◦, β = 10◦ and the angles are measured with 1% uncertainty, determine the tension

(a) in the support cable ACB,
(b) in the traction cable CD.

a) b)

Figure 2. a) A crate suspended from a pulley can roll freely on the support cable ACB and is pulled at a constant
speed by cable CD; b) Free-body diagram.

The chosen coordinate system is presented on the free-body diagram in Figure 2. The determin-
istic equilibrium equations of force x and y components are

FACB cos(10◦)− FACB cos(30◦)− FCD cos(30◦) = 0, (5)

FACB sin(10◦) + FACB sin(30◦) + FCD sin(30◦)− 100× 9.80665 = 0. (6)

The representation convention gives the interval equilibrium equations

[FACB] cos([β])−Dual(FACB cos([α]))−Dual(FCD cos([α])) = 0, (7)

[FACB] sin([β]) + [FACB] sin([α]) + [FCD] sin([α])−Dual([99, 100]× 9.80665) = 0, (8)

wherein [α] = [29, 31]◦, [β] = [9, 11]◦. We search for proper intervals FACB, FCD, that satisfy
Eqs. (7)–(8). First, we check the validity of the distributive relations for the first two additive
terms in Eqs.(7) and (8). Since

[s1] = cos([β])−Dual(cos([α])) ∈ [0.121107, 0.116479] > 0,

[s2] = sin([β]) + sin([α]) ∈ [0.667387, 0.679895] > 0,

by Eq.(4), the system (Eqs. (7)–(8)) is equivalent to the system

[FACB][s1]−Dual(FCD cos([α])) = 0,

[FACB][s2] + [FCD] sin([α])−Dual([99, 100]× 9.80665) = 0.
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Remark 1. It is important that we check the distributive relations for every expression where we
want to take a common interval variable out of brackets. For example, due to Eq. (4), and because
cos([α]) − Dual(cos([β])) < 0, the expression [FACB] cos([α]) − Dual([FACB] cos([β])) is equivalent
to

Dual([FACB]) (cos([α])−Dual(cos([β]))) .

We add [FCD] cos([α]) to the two sides of Eq. (7) and by Eq. (3) obtain the equivalent equation

[FACB][s1] = [FCD] cos([α]).

Dividing both sides of the last equation by Dual(cos([α])), and due to Eq. (3), we obtain

[FCD] = [FACB][s1]/Dual(cos([α])). (9)

We substitute the expression for [FCD] in Eq. (8). Since

[s3] = [s2] + sin([α])[s1]/Dual(cos([α])) ∈ [5.25337, 5.57483] > 0,

due to the distributive relation, Eq. (8) is equivalent to

[FACB][s3]−Dual([99, 100]× 9.80665) = 0,

which is equivalent to

[FACB] = [99, 100]× 9.80665/Dual([s3]) ∈ [1317.51, 1324.97]. (10)

Substituting Eq. (10) in Eq. (9), we obtain the second component of the algebraic solution to
interval system (Eqs. (7)–(8))

[FCD] ∈ [184.806, 177.669].

We are looking for proper algebraic solution to the interval equilibrium system. This restriction
may not always be satisfied, as in the present example with respect to [FCD]. Nevertheless, we
interpret [FACB] and [FCD] in IR as the corresponding proper intervals, namely,

FACB = Abs(pro([FACB])) ∈ [1317.51, 1324.97] N,

FCD = Abs(pro([FCD])) ∈ [177.669, 184.806] N.

Since [FCD] is an improper interval, substituting FACB and FCD into left sides of the Eqs. (7) and (8),
we obtain much wider intervals involving zero, namely, [6.16307,−6.20045] and [−3.53667, 3.60141],
respectively. The relative diameters of FACB and FCD are 0.00565 and 0.0402, respectively.

Remark 2. Proper algebraic solution to the system (Eqs. (7)–(8)) can be obtained if, for example,
we squeeze the interval [α] to the interval [30− 0.1, 30 + 0.1].

Now, we compare the solution FACB, FCD, obtained by the discussed algebraic approach, to the
solution obtained by classical interval arithmetic. The Eqs. (5) and (6) are rearranged to

FACB (cos(10◦)− cos(30◦))− FCD cos(30◦) = 0,

FACB (sin(10◦) + sin(30◦)) + FCD sin(30◦) = 100× 9.80665
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and the corresponding interval linear system that has to be solved is
(

cos([β])− cos([α]), cos([α])
sin([β]) + sin([α]), sin([α])

)(

FACB

FCD

)

=

(

0
[99, 100]× 9.80665

)

.

Since some interval parameters, e.g., [α], [β], appear in more than one element of the matrix and/or
the right-hand side vector, this is a parametric interval linear system. In classical interval arithmetic
we search for a minimal outer interval estimation of the so-called united parametric solution set to
the system. For A(p)x = b(p), p ∈ p, the united parametric solution set is

Σ = {x ∈ R
n | (∃p ∈ p)(A(p)x = b(p))}.

It can be proven, by method discussed in (Popova, 2006), that the united parametric solution
set of the above system depends linearly on the interval parameters involved there. Therefore,
one can find the minimal interval vector containing the united parametric solution set by finding
the interval hull of the set of solutions to the point linear systems of equations obtained for the
parameters taking values at all combinations of the corresponding interval end-points, the so-called
combinatorial approach. Applying this approach, we find

F̃ACB = [1293.33, 1349.74], F̃CD = [175.743, 186.773],

whose relative diameters are respectively 0.04361 and 0.06276. Replacing F̃ACB, F̃CD in the left-
hand sides of the generalized interval equilibrium equations (Eqs. (7) and (8)), we obtain much
wider intervals involving zero [4.89652,−5.02244], [−20.6303, 21.4392]. There is no inclusion relation
between FACB, FCD and F̃ACB, F̃CD. Nevertheless, judging from the value of the relative diameters
and the extent to which the interval equilibrium equations are satisfied, we conclude that the interval
algebraic approach applied to the equilibrium equations provides sharper interval estimations than
the traditional approach based on classical interval arithmetic even in the present case when the
algebraic solution to the interval equilibrium equations is not a proper interval vector.

Remark 3. In some deterministic models, e.g., when determine the forces in the members of a
truss, in order to write the equilibrium equations one has to choose the direction of each of the
unknown forces, cf. (Beer et al., 2010, Chapter 6). It cannot be determined until the solution is
completed whether the guess was correct. To do that, the value found for each of the unknowns is
considered: a positive sign means that the selected direction was correct; a negative sign means that
the direction is opposite to the assumed direction. This convention is transparently applicable to
the corresponding interval algebraic model which delivers the correct sign together with the interval
magnitude.

5. Impact on Models of Structures

Example 3. After (Kulpa et al., 1998) consider a simple planar frame with three types of support
and an external load distributed uniformly along the beam as shown in Figure 3 a).
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Figure 3. Planar frame (a) and its fundamental system of internal parameters (b), after (Kulpa et al., 1998).

Assuming small displacements and linear elastic material law, and using the method of forces,
the frame is described in (Kulpa et al., 1998) by the following set of equilibrium equations for forces
and bending moments, see Figure 3 (b).

Rx
1 +Rx

3 = 0, (11)

Ry
1 +Ry

3 +Ry
4 − ql24 = 0, (12)

−M1 +Ry
4(l12 + l24) +Ry

3l12 +Rx
3 l23 − ql24(l12 +

1

2
l24) = 0, (13)

−Ry
1l12 −M1 +M21 = 0, (14)

Ry
4l24 −

1

2
ql224 −M24 = 0. (15)

The equilibrium equations involve more unknowns than the number of the equations. Then, the
three canonical equations linking bending moments with material properties (Young modulus E
and momentum of inertia J of the beam cross-section) of the beams are given by







l12
3E12J12

l12
6E12J12

0
l12

6E12J12

l12
3E12J12

+ l23
3E23J23

−l23
3E23J23

0 −l23
3E23J23

l24
3E12J12

+ l23
3E23J23











M1

M21

M24



 =





0
0

−ql324
24E24J24



 . (16)

The parameters of this frame will be given as dimensionless numbers. It is assumed that all the
beams have the same Young modulus E and momentum of inertia J of the beam cross-sections are
related by the formula J12 = J23 = 1.5J24. The lengths of the beams and the load are considered to
be uncertain with the following nominal values l12 = l24 = 1, l23 = 0.75, and q = 10. Substituting
these into the Eqs. (11)–(16) for the frame and making appropriate simplifications, a parametric
linear system described by the following relations is obtained

1

2
a11 = a12 = a21 = a65 = −a74 = l12

a22 = 2l12 + 2l23, a33 = 3l24 + 2l23, a66 = l12 + l24, a23 = a32 = −2l23, a68 = l23, a86 = l24

a47 = a48 = a54 = a55 = a56 = −a61 = −a71 = a72 = −a83 = 1
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b = (0, 0, −3

8
q l324, 0, q l24, q l24(l12 +

1

2
l24), 0,

1

2
q l224)

⊤.

It is assumed that there is no prestressing of the structure due to inexact dimensions of the beams.
For that, the uncertainties are considered either as errors of measurements of the elements of the
already existing structure, or else assume the structure will be assembled from inexact elements,
but in a way that does not lead to prestressing (e.g., by slightly moving appropriate supports when
necessary).

Usually, interval estimations for the unknown reactions and moments are found by bounding the
united parametric solution set of the last system. In (Popova, 2006) it is proven that the united
parametric solution set of the system (Eqs. (11)–(16)) depends linearly on the interval parameters.
In (Popova, 2005, Table 8, column 2) the sharpest interval enclosing the solution set is reported for
the parameters

l12 ∈ [0.995, 1.005], l24 ∈ [0.995, 1.005], l23 ∈ [0.74625, 0.75375], q ∈ [9.95, 10.05]. (17)

The obtained enclosures are

Table I. Solution for moments and reactions of the planar frame system with
0.5% uncertain parameters after (Popova, 2005).

M1 M21 M24 R
x

1

[.24479, .25530] [-.51059, -.48958] [-1.0171, -.98309] [-.68421, -.64953]

R
y

1 R
y

3 R
y

4 R
x

3

[-0.76973, -0.73072] [6.6698, 6.8309] [3.9600, 4.0401] [0.64953, 0.68421]

However, Ry
1 + R

y
3 + R

y
4 − ql24 ∈ [−0.24, 0.24] and the equilibrium equation (Eq. (12)) is not

satisfied.
In (Popova, 2005, Table 10, column 2) the sharpest intervals enclosing the solution set is reported

for the the planar frame system with 1% uncertain lengths and 15 % uncertain load. In this case, the
obtained interval estimations are such that Ry

1 +R
y
3 +R

y
4 − ql24 ∈ [3.47, 3.48] and the equilibrium

equation (Eq. (12)) is not satisfied, too.
In order to obtain more realistic interval estimations that satisfy the equilibrium equations

(Eqs. (11)–(15)), we will apply the proposed interval algebraic approach. First, we find the exact
interval hull of the united parametric solution set of the system (Eq. (16)) for the parameters
(Eq. (17)) as shown in Table II.

Then, we replace the obtained intervals for M1, M21 and M24 in the proposed interval model
of the equilibrium equations (Eqs. (11)–(15)) and find the algebraic solution for R

y
1,3,4, R

x
1,3, as

follows. From Eq. (14)

[Ry
1] = (−M1 +M21)/Dual(l12) = −3M1/Dual(l12) ∈ [−0.76055,−0.73954].

From Eq. (15)
[Ry

4] = (M24 + ql224/2)/Dual(l24) ∈ [3.9279, 4.07192].
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Table II. Solution for moments of the system
(Eq. (16)) with 0.5% uncertain parameters.

M1 M21 M24

[.2452, .2548] [-.5096, -.4905] [-1.0171, -.98309]

From Eq. (12)
[Ry

3] = ql24 − [Ry
1]−Dual([Ry

4]) ∈ [6.7118, 6.7889].

If the computations are done in exact (rational) arithmetic, so that there are no round-off errors,
we will have

Dual([Ry
1]) + [Ry

3] + [Ry
4]−Dual(ql24) = [0, 0].

From Eq. (13)

[Rx
3 ] = (ql24(l12+ l24/2)+M1−Dual([Ry

4](l12+ l24))−Dual([Ry
3]l12))/Dual(l23) ∈ [.70557, .62824].

And from Eq. (11)
[Rx

1 ] = −Dual([Rx
3 ]) ∈ [−.70557,−.62824].

[Rx
3 ] is improper interval, so it should be interpreted as the corresponding proper one.

Denote by R̃
y
1,3,4, R̃x

1,3 the sharpest enclosures obtained by classical interval approach and
presented in Table I. Comparing the estimations of the reactions, got by the interval equilibrium
model, to the reaction estimations R̃y

1,3,4, R̃
x
1,3 we obtain

R̃
y
1overdetermines Ry

1 by 46.2%

R̃
y
3overdetermines Ry

3 by 52.2%

R
y
4overdetermines R̃y

4 by 44.3%

Rx
1,3overdetermine R̃x

1,3 by 55.2%.

Note that the last two lines show that the classical interval estimates underdetermine the variation
in reaction magnitude. This is especially dangerous.

Remark 4. Interval forces in the interval equilibrium model are like connected vessels — expand-
ing some interval estimations shrinks the estimation of others, so that the equilibrium equations
are always satisfied. This property is particularly important because not always we can obtain the
sharpest interval estimations of the unknowns involved in the additional relations. To illustrate this
property we take the values of M1,21,24 from Table I and round them outwardly to the second place
after the decimal point as follows

M1 ∈ [24/100, 26/100], M21 ∈ [−52/100,−48/100], M24 ∈ [−102/100,−98/100]. (18)

These intervals overestimate the intervals presented in Table II by 52.5, 52.5, 93.5%, respectively.
Now, we repeat the above computations in the interval model of equilibrium equations and obtain
slightly different intervals for Ry

1,3,4, R
x
1,3 which also satisfy the equilibrium equations.
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Remark 5. Expanding the uncertainty cannot be unlimited. We illustrate this by the following
example. Assume that in the input of interval estimates (Eq. (18)) we have a typing bug so that
M24 ∈ [−102/100,−50/100]. Then the computations in the interval model of equilibrium equations
results in [Ry

3] = [144/199,−16/597], [Rx
1 ] = [−144/199, 16/597], both involving zero. The latter

means that we cannot determine the direction of both reactions. Also the first equilibrium equation
is not satisfied, Rx

1 + Rx
3 ≈ [−0.75, 0.75]. Thus, if the interval model of equilibrium equations

results in interval containing zero for some reaction magnitude, this might be due to wrong model
or overestimation of some uncertain quantities.

Remark 6. The algebraic interval approach to equilibrium equations should be applied to all
interval models (parametric interval systems of equations) involving equilibrium equations, for ex-
ample to systems for both primary and derived variables (Rao et al., 2011). Keeping the equilibrium
equations involving the same number of unknowns out of the parametric system that is solved by
classical interval methods reduces the number of both equations and interval parameters in the
latter, which additionally helps reducing the overestimation of the unknowns in the latter system.

6. Conclusion

The proposed interval algebraic model of equilibrium equations in mechanics contributes to the
development of more realistic and accurate interval models that conform to the problem physics.
The most attractive in the interval algebraic approach is its straightforward and transparent appli-
cation to the deterministic model. By a simple representation convention one can easily transform
a deterministic formulation into a unique interval arithmetic formulation in the interval space
(KR,+,×,⊆). Then in the same rich algebraic space one finds sharp algebraic solutions for the
unknown quantities and interpret them in the original physical setting of the problem.

The proposed new interval model is demonstrated on various examples of practical problems
whose models involve equilibrium equations and interval uncertainties. Along with guaranteed
quantification of all sources of uncertainties, the new algebraic approach provides also sharper
enclosure of the unknown quantities than the best known methods based on classical interval
arithmetic. Contrary to classical interval approach, the algebraic one provides satisfaction of the
equilibrium equations even for large parameter uncertainties.

The proposed interval model of equilibrium equations allows accounting for the dependencies
between interval parameters from the very beginning of modeling process, as well as efficient
reduction of the interval overestimation that may arise in more complicated models.
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How to Estimate Amount of Useful Information, in Particular

Under Imprecise Probability
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Abstract: Traditional Shannon’s information theory describes the overall amount of information,
without distinguishing between useful and unimportant information. Such a distinction is needed,
e.g., in privacy protection, where it is crucial to protect important information while it is not that
crucial to protect unimportant information. In this paper, we show how Shannon’s definition can
be modified so that it will describe only the amount of useful information.

Keywords: amount of information, entropy, utility, imprecise probabilities, interval uncertainty,
useful information

1. Formulation of the Problem: Traditional Information Theory Does Not
Distinguish Between Useful and Unimportant Information

To gauge the amount of information, we need to be able to gauge uncertainty. The more
we learn, the more information we have about the world. Our ultimate goal is to gain a complete
knowledge of the world, i.e., to reach a situation when we should be able, based on this knowledge,
to answer any question that anyone may have about the future or past state of the world.

For example:

− one of the main objectives of meteorology is to be able to predict future weather;

− one of the main objectives of celestial mechanics is to predict future locations of celestial bodies
and man-made satellites,

− etc.

In practice, we rarely have the complete information, we usually have only partial information,
based on which we cannot uniquely reconstruct the state of the world and thus, cannot always find
an answer to a question about the world. In other words, in practice, we have uncertainty.

Additional information allows us to decrease this uncertainty. It is therefore reasonable to gauge
the amount of information in the new knowledge by how much this information decreases the
original uncertainty. Thus, a natural way to gauge the amount of information is to estimate how

c© 2016 by authors. Printed in Germany.
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much this information decreases uncertainty. Hence, to gauge the amount of information, we need
to be able to gauge the amount of uncertainty.

How to gauge the amount of uncertainty: idea. As we have mentioned earlier, uncertainty
means that for some questions, we do not have a definite answer. Once we learn the answers to
these questions, we thus decrease the original uncertainty. It is therefore reasonable to estimate the
amount of uncertainty by the number of questions needed to eliminate this uncertainty.

Of course, not all questions are created equal. Some questions can have a simple binary “yes”-
“no” question, some questions look for a more detailed answer – e.g., we can ask what is the value of
a certain quantity. No matter what is the answer, we can describe this answer inside the computer
and thus – since everything in the computer is represented as 0s and 1s – represent this answer as
a sequence of 0s and 1s. Such a several-bits question can be represented as a sequence of on-bit
questions:

− we can first ask what is the first bit of the answer,

− we can then ask what is the second bit of the answer,

− etc.

Since every question can thus be represented as a sequence of one-bit (“yes”-“no”) questions,
it is reasonable to measure uncertainty by the smaller number of such “yes”-“no” questions which
are needed to eliminate this uncertainty – i.e., to uniquely determine the state of the corresponding
system.

Let us recall how this idea can be transformed into exact formulas.

How to gauge uncertainty: finite case. Let us first consider the situation when we have finitely
many N alternatives. In this case:

− if we ask one binary question, then we can get two possible answers (0 and 1) and thus, uniquely
determine one of the two different states;

− if we ask two binary questions, then we can get four possible combinations of answers (00, 01,
10, and 11), and thus, uniquely determine one of the four different states;

− in general, if we ask q binary questions, then we can get 2q possible combinations of answers,
and thus, uniquely determine one of 2q states.

So, to identify one of n states, the smallest number of binary questions q needed for this identification
is the smallest value q for which 2q ≥ N . This inequality is equivalent to q ≥ log2(N), and thus,
the smallest number of binary questions is equal to the smallest integer which is greater than or
equal to this logarithm, i.e., equal to dlog2(q)e.
How to gauge uncertainty: finite case with known probabilities. In the previous text, we
considered the situation when we have n alternatives about whose frequency we know nothing. In
practice, we often know the probabilities p1, . . . , pn of different alternatives. In this case, instead
of considering the worst-case number of binary questions needed to eliminate uncertainty, it is
reasonable to consider the average number of questions.
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This value can be described as follows. We have a large number N of similar situations with
n-uncertainty.

− In N · p1 of these situations, the actual state is State 1.

− In N · p2 of these situations, the actual state is State 2,

− etc.

The average number of binary questions can be obtained if we divide the overall number of questions
needed to determine the states in all N situations, by N .

Let us describe the uncertainty of this N -repetitions arrangement. Out of N situations, there
are (

N

N · p1

)
=

N !

(N · p1)! · (N −N · p1)!

ways to select the situations in which the actual state is State 1. For each of these situations, there
are (

N · p1

)
=

(N −N · p1)!

(N · p2)! · (N −N · p1 −N · p2)!

ways to select, among the remaining N −N · p1 situations, N · p2 ones for which the actual state
is State 2, etc. Thus, the overall number of possible arrangements is equal to the product

A =
N !

(N · p1)! · (N −N · p1)!
· (N −N · p1)!

(N · p2)! · (N −N · p1 −N · p2)!
· . . . =

N !

(N · p1)! · (N · p2)! · . . . · (N · pn)!
.

To identify one of these A arrangements, we need to ask

Q = log2(A)

binary questions. For the above formula for A, we get

Q = log2(N !)−
n∑

i=1

log2((N · pi)!).

Here,

m! ∼
(m
e

)m
,

so
log2(m!) ∼ m · (log2(m)− log2(e)).

Thus,

Q = N · log2(N)−N · log2(e)−
n∑

i=1

(N · pi) · log2(N · pi) +

n∑
i=1

(N · pi) · log2(e),
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and the average number q of “yes”-“no” questions is equal to

q =
Q

N
= log2(N)− log2(e)−

n∑
i=1

pi · log2(N · pi) +
n∑

i=1

pi · log2(e).

Taking into account that log2(N · pi) = ln(N) + ln(pi), we get

q = log2(N)− log2(e)−
n∑

i=1

pi · log2(N)−
n∑

i=1

pi · log2(pi) +

(
n∑

i=1

pi

)
· log2(e) =

log2(N)− log2(e)−

(
n∑

i=1

pi

)
· log2(N)−

n∑
i=1

pi · log2(pi) +

(
n∑

i=1

pi

)
· log2(e).

Since
n∑

i=1
pi = 1, we get

q = −
n∑

i=1

pi · log2(pi).

This is the classical Shannon’s formula for the amount of uncertainty (Shannon and Weaver, 1971).

How to gauge uncertainty: continuous case. In the continuous case, when the unknown(s) can
take any of the infinitely many values from some interval, we need infinitely many binary questions
to uniquely determine the exact value.

To estimate uncertainty, it then makes sense to consider the average number of questions needed
to determine each value with a given accuracy ε > 0.

In other words, instead of determining the exact value x, we divide the real line into intervals
[xi − ε, xi + ε], where xi+1 = xi + 2ε, and we want to find out to which of these intervals the
actual value x belongs. For small ε, the probability pi of belonging to the i-th interval is equal to
pi ≈ ρ(xi) · (2ε). Substituting this expression for pi into the classical Shannon’s formula, we get

q = −
n∑

i=1

pi · log2(pi) = −
n∑

i=1

ρ(xi) · (2ε) · log2(ρ(xi) · (2ε)).

Using the fact that log(a · b) = log(a) + log(b), we conclude that

q = −
n∑

i=1

ρ(xi) · (2ε) · log2(ρ(xi))−
n∑

i=1

ρ(xi) · (2ε) · log2(2ε).

The first term in this sum has the form

−
n∑

i=1

ρ(xi) · log2(ρ(xi)) · (2ε) = −
n∑

i=1

ρ(xi) · log2(ρ(xi)) ·∆xi,
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where we denoted ∆xi
def
= xi+1 − xi. One can easily see that this term is an integral sum for the

interval −
∫
ρ(x) · log2(ρ(x)) dx and thus, for small ε, is practically equal to this interval.

Similarly, the second term has the form

−
n∑

i=1

ρ(xi) · (2ε) · log2(2ε) = − log2(2ε) ·
n∑

i=1

ρ(xi) · (2ε) = − log2(2ε) ·
n∑

i=1

ρ(xi) ·∆xi,

and is, thus, an integral sum for the integral − log2(2ε) ·
∫
ρ(x) dx. By the formula of complete

probability, we have
∫
ρ(x) dx = 1, so the second term is simply equal to − log2(2ε) and thus, the

average number of binary questions q which is needed to determine x with accuracy ε is equal to

q = −
∫
ρ(x) · log2(ρ(x)) dx− log2(2ε).

The first term in this expression does not depend on ε and thus, provides a good measure of how
much uncertainty we have. This term

S
def
= −

∫
ρ(x) · log2(ρ(x)) dx

was also introduced originally by Shannon and is known as Shannon’s entropy (or simply entropy,
for short) (Shannon and Weaver, 1971).

A similar formula holds in the multi-D case, when instead of a single variable x, we have a tuple
of variables ~x = (x1, . . . , xm):

q = S −m · log2(2ε),

where

S = −
∫
ρ(~x) · log2(ρ(~x)) d~x.

Need to distinguish between useful and unimportant information. Not all information is
created equal:

− some pieces of information are useful, while

− other pieces of information are unimportant.

Whether the information is useful or not depends on what we plan to do with this information. For
example:

− if we are interested in predicting weather in a given geographic area based on meteorological
observations, then the specific colors at sunset or the colors and the smell of the fog are probably
unimportant, while

− if we are analyzing polluting level, all this would be a very useful information.
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Such distinction is important in privacy protection. A distinction between useful and irrel-
evant information is needed in privacy protection. Ideally, we would like to maintain full privacy,
so that no one can gain any information about a person without his or her explicit permission.
However, realistically, some information may be leaked. It is therefore important to distinguish
between the cases when an important information was leaked and when an unimportant piece of
information was leaked.

For example, if we want to keep the salaries private, then disclosing the higher bits of the salaries
– i.e., in effect, the approximate values of the salaries – would be a major violation of privacy, while
disclosing the lowest bits, i.e., number of cents in the annual salary, would be reasonably harmless.

It is therefore desirable to estimate the amount of useful information, i.e., information that
affects the utility of different alternatives.

Such a distinction is also important in education. The distinction between relevant and
irrelevant information underlies a successful training system designed by A. M. Zimichev et al.
in the 1980s; see, e.g., (Zimichev, Kreinovich, et al., 1982; Zimichev, Kreinovich, et al., 1982a;
Aló and Kosheleva, 2006). This system started with an attempt to resolve the following seeming
contradiction.

On the one hand, the vast majority of pedagogues strongly supports the humanitarian belief that
(almost) students are equal in their ability to learn. Some students may require different learning
styles, different support environments, but the history of education has consistently shown that
any group originally perceived as inferior in learning – be it by gender or by race or by country of
origin – turns out to be as successful as everyone else. Standardized tests consistently prove that
kids from different groups have, on average, the same ability to learn. There are big discussions on
whether 10% differences between scores are meaningful or not, but the very size of these disputed
differences confirms the big pictures: we are all born equally skilled in learning.

Based on the fact that we are all equally skilled in learning, one should expect that with advanced
learning strategies, all kids should succeed equally in school. Alas, no matter how advanced is the
pedagogical technique that we use in the actual classroom, usually, after each class, there is a big
difference between how much different kids learned, difference often in the orders of magnitude.

Since this difference cannot be explained by the difference in the kid’s ability to learn, then why
is it there? and, most importantly, how can we overcome this difference and enable each kid to
learn according to his or her full potential?

To understand the empirically observed difference, researchers decided to quantify how much
the students recalled. They asked each student, after the class, to spend an hour or so writing
down what this student remembered after the class, be it the material from the class, what was
happening outside, etc. Then, the researchers tried their best to quantify this amount of information
by counting it in bits.

When they counted the number of bits relevant to the material presented in the class (e.g., math),
they got exactly the same order of magnitude difference as was expected. Surprisingly, however,
when they counted the total amount of information, including both the information presented in
the class and the irrelevant information (what was the teacher dressed in, what birds were signing,
what kids at neighboring desks were saying, etc.), then the total amounts of information recalled
by all the kids became approximately the same.
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In other words, both the best learners and the worst learners remembered approximately the
same amount of information, but the best learners remembered the material presented in the class,
while the worst learners remembered a lot of irrelevant details but not what was taught.

2. How to Estimate the Amount of Useful Information: A Suggestion

Main idea. According to decision theory, the usefulness of each situation to a user can be described
by a utility function u(x); see, e.g., (Fishburn, 1969; Raiffa, 1970; Luce and Raiffa, 1989; Nguyen
et al., 2009).

Therefore, we propose to count the number of binary questions that are needed to determine
each of the unknown variables with accuracy sufficient to determine the utility u with a given
accuracy ε > 0.

From this viewpoint, if some variable is irrelevant, then it does not affect the utility at all, so
we should not waste binary questions trying to find the value of this variable. If some variable is
slightly relevant, then a very crude estimate of this variable will provide us with ε-accuracy in u(x)
– and therefore, few questions will be needed. On the other hand, if a variable is highly relevant,
then we need exactly as many questions as before.

Let us transform this idea into a precise definition. Let us describe how this idea can be
transformed into a precise definition.

We will start with the case when we have only one variable x, and then continue with the multi-D
case.

Towards a precise definition: 1-D case. In the 1-D case, if we know x with uncertainty ∆x,
then the resulting values of the utility is known with the uncertainty

u(x+ ∆x)− u(x) ≈ u′(x) ·∆x,

where u′(x) denotes the derivative of the utility function. Thus, to get the desired accuracy ε in

describing utility u(x), we need to determine x with accuracy ∆x =
ε

|u′(x)|
.

In this case, we divide the real line into intervals[
xi −

ε

|u′(xi)|
, xi +

ε

|u′(xi)|

]
,

where

xi+1 = xi +
2ε

|u′(xi)|
,

and we want to find out to which of these intervals the actual value x belongs. For small ε, the
probability pi of belonging to the i-th interval is equal to

pi ≈ ρ(xi) ·∆xi = ρ(xi) ·
2ε

|u′(xi)|
,

where we denote ∆xi
def
= xi+1 − xi.
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Substituting this expression for pi into the classical Shannon’s formula, we get the following
formula for the average number of questions q:

q = −
n∑

i=1

pi · log2(pi) = −
n∑

i=1

ρ(xi) ·∆xi · log2

(
ρ(xi) ·

2ε

|u′(xi)|

)
.

Using the fact that log(a · b) = log(a) + log(b), we conclude that

q = −
n∑

i=1

ρ(xi) ·∆xi · log2

(
ρ(xi)

|u′(xi)|

)
−

n∑
i=1

ρ(xi) ·∆xi · log2(2ε).

The first term in this sum has the form

−
n∑

i=1

ρ(xi) · log2

(
ρ(xi)

|u′(xi|

)
·∆xi,

i.e., it is an integral sum for the interval

−
∫
ρ(x) · log2

(
ρ(x)

|u′(x)|

)
dx

and thus, for small ε, is practically equal to this interval.
Similarly to the traditional Shannon’s entropy case, the second term is equal to − log2(2ε).
Thus, the average number of binary questions q which is needed to determine the utility u(x)

with accuracy ε is equal to

q = −
∫
ρ(x) · log2

(
ρ(x)

|u′(x)|

)
dx− log2(2ε).

The first term in this expression does not depend on ε and thus, provides a good measure of how
much uncertainty we have. Thus, we arrive at the following conclusion.

1-D case: conclusion. The average number of binary questions needed to determine the utility
u(x) with given accuracy ε > 0 is equal to q = Su − log2(2ε), where

Su
def
= −

∫
ρ(x) · log2

(
ρ(x)

|u′(x)|

)
dx.

Thus, this quantity Su can be viewed as the amount of useful information.
By using the fact that log(a/b) = log(a)− log(b), we conclude that

Su = S +

∫
ρ(x) · log2(|u′(x)|) dx,

where S is the traditional Shannon’s entropy. The additional integral term is the mathematical
expectation of log2(|u′(x)|).
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Discussion. In the particular case when u(x) = x, determining the utility with accuracy ε is
equivalent to finding x with accuracy ε, so the new expression coincides with the traditional
Shannon’s entropy formula.

The smaller the derivative |u′(x)|, the less relevant the variable x – and the smaller the additional
term and, thus, the amount Su of useful information.

Multi-D case. In the multi-D case, for each of the variables xj (1 ≤ j ≤ m), the interval that
guarantees accuracy ε in the utility has the width

∆xj =
2ε

|u,j |
,

where we denoted

u,j
def
=

∂u

∂xj
.

Thus, we divide the whole m-dimensional space into zones of volume

∆V =
(2ε)m

m∏
j=1
|u,j |

and probability

pi = ρ(~xi) ·
(2ε)m

m∏
j=1
|u,j(~xi)|

.

Substituting these probabilities into the Shannon’s formula, we conclude that

q = −
∫
ρ(~x) · log2

 ρ(~x)
m∏
j=1
|u,j(~x)|

 dx− log2(2ε).

Thus, as an amount of useful information, we can take the value

Su = −
∫
ρ(~x) · log2

 ρ(~x)
m∏
j=1
|u,j(~x)|

 d~x.

By using the formula log(a/b) = log(a) − log(b), we can reformulate this formula in the following
form:

Su = S +

m∑
i=1

∫
ρ(~x) · log2(|u,j(~x)|) d~x,
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where S is the traditional Shannon’s entropy and each additional term is the expected value of
log2(|u,j(~x)|), where u,j(~x) is the j-th partial derivative of the utility function u(~x).

What if only have partial information about the probabilities. The above formulas assume
that we have a complete knowledge of the corresponding probabilities. Specifically, these formulas
assume that for every point ~x, we know the corresponding value ρ(~x) of the probability density
function.

In practice, however, we only have partial information about the probabilities. Specifically,
instead of the exact value ρ(~x), we only know a lower bound ρ(~x) and an upper bound ρ(~x) on
the actual (unknown) value ρ(~x), i.e., we only know that the the value ρ(~x) belongs to the interval
[ρ(~x), ρ(~x)].

Many different probability distributions are consistent with this interval information. For
different such distributions, in general, we get different values for the amount Su of useful
information.

We do not know which of the distributions are more probable and which are less probable.
Thus, we do not know which values of Su are more probable and which are less probable. In such
situations, it makes sense to characterize the uncertainty by the worst-case scenario, i.e., by the
largest of the corresponding values Su:

Su
def
= max

{
Su : ρ(~x) ≤ ρ(~x) ≤ ρ(~x) for all x and

∫
ρ(~x) d~x = 1

}
.

To compute this largest value, we can take into account that the objective function Su is concave
and the corresponding domain{

ρ(~x) : ρ(~x) ≤ ρ(~x) ≤ ρ(~x) for all x and

∫
ρ(~x) d~x = 1

}
is convex. Thus, to compute the maximum Su, we can use one of the efficient convex optimization
algorithms; see, e.g., (Bertsekas, 2015).

Comment. Algorithms for computing a similar bound S for the traditional Shannon’s entropy S
under such intervl uncertainty are presented in (Kreinovich, 1996; Xiang et al., 2007; Nguyen et
al., 2012).
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Abstract: Because of the measurement errors, the result ỹ = f(x̃1, . . . , x̃n) of processing the
measurement results x̃1, . . . , x̃n is, in general, different from the value y = f(x1, . . . , xn) that we
would obtain if we knew the exact values x1, . . . , xn of all the inputs. In the linearized case, we can
use numerical differentiation to estimate the resulting difference ∆y = ỹ− y; however, this requires
> n calls to an algorithm computing f , and for complex algorithms and large n this can take too
long. In situations when for each input xi, we know the probability distribution of the measurement
error, we can use a faster technique for estimating ∆y – namely, Monte-Carlo simulation technique.
A similar Monte-Carlo technique is also possible for the case of interval uncertainty, but the resulting
simulation is not realistic: this technique uses Cauchy distributions which can result in arbitrarily
small or arbitrarily large values, while we know that each measurement error ∆xi = x̃i − xi is
located within the corresponding interval. In this paper, we prove that this non-realistic character
of interval Monte-Carlo simulations is inevitable: namely, that no realistic Monte-Carlo simulation
can provide a correct bound for ∆y.

Keywords: Monte-Carlo techniques, interval uncertainty

1. Need to Gauge Uncertainty of the Result of Data Processing: A Brief Reminder

Need for data processing. One of the main objectives of science is to predict the future state
of the world, i.e., to predict the future values of the quantities that describe this future state. To
make these predictions, we need to know how each of these future values y depends on the current
values x1, . . . , xn of the related quantities, i.e., we need to know an algorithm y = f(x1, . . . , xn)
that relates y to xi.

Once we find this information, we can then use the results x̃1, . . . , x̃n of measuring the quantities
xi to compute an estimate ỹ = f(x̃1, . . . , x̃n) for the desired future value y.

For example, to predict tomorrow’s temperature in El Paso y, we need to know today’s tem-
perature, wind speed and direction, and humidity in different locations inside El Paso and near El
Paso; these values x1, . . . , xn are what we can use for this prediction. We can then use an appro-
priate method for solving the corresponding partial differential equation as the desired prediction
algorithm y = f(x1, . . . , xn).

The weather example shows that the corresponding prediction algorithms can be very compli-
cated; thus, we need to use high-performance computers for this data processing.

c© 2016 by authors. Printed in Germany.
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Other situations when we need data processing come from the fact that we also want to know
the current state of the world, i.e., we want to know the current values of all the quantities that
describe this state. Some of these quantities – like temperature in El Paso – we can measure directly.
Other quantities, such as the temperature or the density deep inside the Earth, are difficult or even
impossible to measure directly. To find the values of each such difficult-to-measure quantity y,
a natural idea is to find related easier-to-measure quantities x1, . . . , xn that are related to the
desired quantity y by a known dependence y = f(x1, . . . , xn), and then use the results x̃1, . . . , x̃n
of measuring xi to compute an estimate ỹ = f(x̃1, . . . , x̃n) for y.

Need to take uncertainty into account when processing data. In general, data processing
means applying some algorithm f(x1, . . . , xn) to the values of the quantities x1, . . . , xn, resulting
in a value y = f(x1, . . . , xn).

Values xi usually come from measurements. Measurement are never absolutely accurate; the mea-
surement result x̃i is, in general, different from the actual (unknown) value xi of the corresponding

quantity: ∆xi
def
= x̃i − xi 6= 0; see, e.g., (Rabinovich, 2005).

Because of the this, the computed value ỹ = f(x̃1, . . . , x̃n) is, in general, different from the ideal
value y = f(x1, . . . , xn).

It is therefore desirable to estimate the accuracy ∆y
def
= ỹ− y. To estimate ∆y, we need to have

some information about the measurement errors ∆xi.

What do we know about the measurement errors ∆xi: two main situations. Traditional
engineering approach to estimating the uncertainty of the results of data processing assumes that
we know the probability distribution of each measurement error ∆xi, and that the corresponding
random variables are independent; see, e.g., (Rabinovich, 2005).

In many practical situations, it is assumed that each ∆xi is normally distributed with zero mean
and known standard deviation σi, but other distributions are also possible. In such situations, our
goal is to find the probability distribution for ∆y.

In many other practical situations, however, we only know the upper bound ∆i on the absolute
value |∆xi| of the measurement error: |∆xi| ≤ ∆i. In such situations, the only information that
we have about the (unknown) actual value xi is that thus value belongs to the interval xi =
[x̃i −∆i, x̃i + ∆i].

Different values xi from these intervals can lead, in general, to different values of y =
f(x1, . . . , xn). Our goal is then to find the range y of all possible values of y:

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

The problem of computing this range y is one of the main problems of interval computations; see,
e.g., (Jaulin et al., 2001; Moore, Kearfott, and Cloud, 2009; Rabinovich, 2005).

Possibility of linearization. In many practical situations, the measurement errors are relatively
small. These are the cases that we will consider in this paper.

In such cases, we can safely ignore terms which are quadratic or higher order in ∆xi, and conclude
that (Rabinovich, 2005)

∆y =

n∑
i=1

ci ·∆xi, (1)
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where

ci
def
=

∂f

∂xi
. (2)

What we do in this paper: main idea. In this paper, we recall the known methods of estimat-
ing the interval y under the linearization assumptions. Specifically, there are two classes of such
methods:

− methods that use analytical or numerical differentiation, and

− methods that use Monte-Carlo simulations.

The problem with the existing Monte-Carlo methods is that they are not realistic: namely,

− while we know that each variable xi can only take values inside the corresponding interval xi,

− the simulated values xi can take values outside the interval xi.

In this paper, we prove that this non-realistic character of interval Monte-Carlo simulations is
inevitable: namely, that no realistic Monte-Carlo simulation can produce the correct result y.

Structure of the paper. We start, in Section 2, with recalling the existing methods for computing
the interval y. The explanation of why Cauchy distribution is used in this simulation – and not
any other distribution – is given in a special Appendix.

In Section 3, we explain the problem with the existing Monte-Carlo method: that the corre-
sponding simulations are not realistic. To emphasize why this is a problem, we recall Monte-Carlo
techniques for the case of probabilistic uncertainty – which are realistic.

Finally, in Sections 4 and 5, we prove our main result: that in the case of interval uncertainty,
the use of non-realistic Monte-Carlo techniques is inevitable. Specifically:

− in Section 4, we prove this result under the additional assumption that the simulated values
∆xi are independent, and then,

− in Section 5, we extend this result to the most general case, when we allow dependence between
the simulated random variables.

2. Existing Methods for Computing the Interval Range: Linearization Case

Towards an explicit formula for the desired interval y. The expression (1) for ∆y attains
its largest value when each of the terms ci ·∆xi attains its largest possible value.

Each of these terms is a linear function of ∆xi on the interval [−∆i,∆i]. When ci ≥ 0, this
linear function is increasing and thus, it attains its largest possible value when ∆xi is the largest,
i.e., when ∆xi = ∆i. The corresponding value of the term ci ·∆xi is ci ·∆i.
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When ci < 0, the linear function ci · ∆xi is decreasing and thus, it attains its largest possible
value when ∆xi is the smallest, i.e., when ∆xi = −∆i. The corresponding value of the term ci ·∆xi
is ci · (−∆i) = (−ci) ·∆i.

In both cases, the largest possible value of each term ci ·∆xi is equal to |ci| ·∆i. Thus, the largest
possible value ∆ of the sum (1) is equal to

∆ =
n∑
i=1

|ci| ·∆i. (3)

Similarly, one can show that the smallest possible value of the sum (1) is equal to −∆. Thus,
the range of possible values of ∆y is the interval [−∆,∆], and the range y of possible values of
y = ỹ −∆y is equal to

y = [ỹ −∆, ỹ + ∆]. (4)

Thus, once we have the result ỹ = f(x̃1, . . . , x̃n) of data processing, to compute the desired range
y, it is sufficient to be able to compute the value ∆.

Case of analytical differentiation. In some cases, we have explicit expressions – or efficient
algorithms – for the partial derivatives (2). In such cases, to compute ∆, we can first compute these
derivatives ci, and then apply the formula (3).

Numerical differentiation: idea. In many practical situations, we do not have algorithms for
computing the derivatives ci. This happens, e.g., when we use proprietary software in our computa-
tions – in this case, we cannot use neither formula for differentiation, nor automatical differentiation
tools.

In such situations, we can use the fact that we are under the linearization assumption that thus,
that for each i and hi 6= 0, we have

f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) ≈ f(x̃1, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n) + hi · ci. (5)

If we move the term ỹ = f(x̃1, . . . , x̃i, x̃i−1, x̃i+1, . . . , x̃n) to the left-hand side of the formula (5)
and divide both sides of the resulting approximate equality by hi, we conclude that

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
. (6)

This is a known formula for numerical differentiation.
By using this formula, we get the following method for computing ∆.

Numerical differentiation: algorithm. We select some values hi 6= 0. Then, we compute the
values

ci =
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
. (7)

Finally, we plug in these values into the formula (3) and get the desired estimate for ∆.

Numerical differentiation: computation time. The above algorithm contains n + 1 calls to
the original data processing algorithm f :
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− one call to compute ỹ and

− n calls to compute n partial derivatives c1, . . . , cn.

As we have mentioned earlier, the data processing algorithm f itself can be very time-consuming.
The same weather prediction example shows that the number n of input variables can also be
large, in hundreds or even thousands. As a result, the computation time needed for the numerical
differentiation method can be very large.
Need for a faster method: idea. Since the numerical differentiation method takes too long time,
it is desirable to come up with a faster method for computing ∆ and y.

Such a method is indeed known; see, e.g., (Kreinovich and Ferson, 2004). This method is based
on using Cauchy distribution, with the probability density function

ρ∆(x) =
∆

π
· 1

1 +
x2

∆2

. (8)

Specifically, there is a known result about this distribution: that

− when we have several independent random variables ∆xi distributed according to Cauchy
distribution with parameter ∆i,

− then their linear combination
n∑
i=1

ci ·∆xi is also Cauchy distributed, with parameter

∆ =

n∑
i=1

|ci| ·∆i.

This is exactly the desired formula (3). Thus, we can find ∆ as follows:

− first, we several times simulate the inputs ∆x
(k)
i according to the Cauchy distribution;

− then, we plug in the corresponding simulated values x
(k)
i = x̃i−∆x

(k)
i into the data processing

algorithm f(x1, . . . , xn), producing the values y(k) = f(x
(k)
1 , . . . , x

(k)
n );

− then, the differences ∆y(k) = ỹ−y(k) are also Cauchy distributed, with the desired parameter ∆.

The desired value ∆ can then be determined, e.g., by using the Maximum Likelihood method, i.e.,
from the condition that

L
def
=

N∏
k=1

ρ∆(∆y(k)) =
N∏
k=1

∆

π
· 1

1 +
(∆y(k))2

∆2

→ max (9)
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Maximizing the likelihood L is equivalent to minimizing its negative logarithm ψ
def
= − ln(L).

Differentiating L with respect to ∆ and equating the derivative to 0, we get the following formula:

N∑
k=1

1

1 +
(∆y(k))2

∆2

=
N

2
. (10)

To find ∆ from this equation, we can use, e.g., the bisection method. Thus, we arrive at the following
algorithm.

Monte-Carlo method for estimating the interval uncertainty: algorithm. We select the
number of iterations N . For each iteration k = 1, . . . , N , we do the following:

− First, we simulate ∆x
(k)
i based on Cauchy with parameter ∆i. We can do this, e.g., by com-

puting ∆
(k)
i = ∆i · tan(π · (rik − 0.5), where rik is the result of a standard random number

generator that generates the numbers uniformly distributed on the interval [0, 1].

− After that, we compute the difference

∆y(k) def
= ỹ − f(x̃1 −∆x

(k)
1 , . . . , xn −∆x(k)

n ). (11)

Now, we can find ∆ by using bisection to solve the equation (10). Specifically, we start with ∆ = 0
and ∆ = max

1≤k≤N
|∆y(k)|. For ∆ = ∆, the left-hand side of the formula (10) is smaller than N/2,

while for ∆ = ∆, this left-hand side is larger than N/2. Thus, if we want to get ∆ with the desired
accuracy ε, while ∆−∆ > ε, we do the following:

− we compute ∆mid =
∆ + ∆

2
;

− we check whether
N∑
k=1

1

1 +

(
∆y(k)

)2
∆2

mid

<
N

2
; (12)

− if this inequality is true, we replace ∆ with the new value ∆mid, leaving ∆ unchanged;

− if this inequality is not true, we replace ∆ with the new value ∆mid, leaving ∆ unchanged.

In both cases, on each iteration, the width of the interval
[

∆,∆
]

becomes twice smaller. Thus, in
s steps, we decrease this width by a factor of 2s. So, in a few steps, we get the desired value ∆. For
example, to get the width ≤ 0.1% of the original one, it is sufficient to perform only 10 iterations
of the bisection procedure.

Monte-Carlo method: computation time. In the Monte-Carlo approach, we need N + 1 calls
to the data processing algorithm f , where N is the number of simulations.
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Good news is that, as in statistical methods in general, the needed number of simulation N is
determined only by the desired accuracy ε and does not depend on the number of inputs n. For
example, to find ∆ with relative accuracy 20% and certainty 95% (i.e., in 95% of the cases), it is
sufficient to take n = 200 (Kreinovich and Ferson, 2004).

Thus, when the number of inputs n of the data processing algorithm f is large, the Monte-Carlo
method for estimating interval uncertainty is much faster than numerical differentiation.

3. Problem: The Existing Monte-Carlo Method is Not Realistic

Monte-Carlo method for the case of probabilistic uncertainty. To explain the problem with
the existing Monte-Carlo method for interval uncertainty, let us recall the Monte-Carlo method for
the case of probabilistic uncertainty.

This method is used when we know the probability distributions ρi(x|Deltaxi) for each ∆xi, and
we know that these random variables are independent. In this case, to find the desired distribution
for ∆y, we several times k = 1, . . . , N , do the following:

− we simulate n variables ∆x
(k)
i according to the corresponding probability distribution ρi(∆xi);

− then we simulate x
(k)
i = x̃i −∆x

(k)
i for each i;

− we apply the data processing algorithm f(x1, . . . , xn) to the simulated values, resulting in

y(k) = f(x
(k)
1 , . . . , x

(k)
n );

− finally, we compute ∆y(k) = ỹ − y(k).

One can easily check that these differences ∆y(k) have the same distribution as ∆y. So, we can
determine the desired probability distribution from the sample ∆y(1), . . . , ∆y(N).

Monte-Carlo method for the case of probabilistic uncertainty is realistic. The above
Monte-Carlo method is realistic in the following sense:

− we know that each measurement error ∆xi is distributed according to the probability
distribution ρi(∆xi), and

− this is exactly how we simulate the measurement errors: to simulate each value ∆
(k)
i , we use

the exact same distribution ρi(∆xi).

In contrast, the Monte-Carlo method for the case of interval uncertainty is not realistic.
In the case of uncertainty, all we know is that the measurement errors are always located within
the corresponding interval [−∆i,∆i]. We do not know how frequently measurement errors will
be observed in different parts of this interval. In other words, we do not know the probability
distribution of the measurement errors – we only know that this (unknown) probability distribution
is located on the interval [−∆i,∆i] with probability 1.
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With this in mind, a realistic Monte-Carlo simulation would mean that for simulating the values

∆
(k)
i , we select a probability distribution is located on the corresponding interval [−∆i,∆i] with

probability 1. Instead, the existing Monte-Carlo method for interval uncertainty uses Cauchy distri-
bution – and it is known that for this distribution, for any interval, there is a non-zero probability
to be outside this interval, and thus, the probability to be inside the interval [−∆i,∆i] is smaller
than 1.

A natural question. A natural question is:

− is this a limitation of the existing method, and an alternative realistic Monte-Carlo method is
possible for the case of interval uncertainty,

− or this is a limitation of the problem, and no realistic Monte-Carlo method is possible for
interval uncertainty.

What we do in this paper. In the two remaining sections, we prove that the non-realistic
character of the existing Monte-Carlo method for interval uncertainty is a limitation of the problem.
In other words, we prove that no realistic Monte-Carlo is possible for the case of interval uncertainty.

4. Proof That Realistic Interval Monte-Carlo Techniques Are Not Possible:
Case of Independent Variables

To prove the desired result, it is sufficient to consider a simple case. To prove the desired
impossibility result – that no realistic Monte-Carlo algorithm is possible that would always compute
the desired range y – it is sufficient to prove that we cannot get the correct estimate for one specific
function f(x1, . . . , xn).

As such a function, let us consider the simple function f(x1, . . . , xn) = x1 + . . . + xn. In this
case, all the partial derivatives are equal to 1, i.e., c1 = . . . = cn = 1 and thus,

∆y = ∆x1 + . . .+ ∆xn. (13)

If we assume that each variables ∆xi takes value from the interval [−δ, δ], then the range of
possible values of the sum is [−∆,∆], where ∆ = n · δ.

Analysis of the problem. Under Monte-Carlo simulations, we have

∆y(k) = ∆x
(k)
1 + . . .+ ∆x(k)

n . (14)

We assumed that the probability distributions corresponding to all i are independent.
Since the original problem is symmetric with respect to permutations, the corresponding distri-

bution is also symmetric, so all ∆
(k)
i are identically distributed. Thus, the value ∆y is the sum of

several (n) independent identically distributed random variables.
It is known that due to the Central Limit Theorem (see, e.g., (Sheskin, 2011)), when n increases,

the distribution of the sum tends to Gaussian. So, for large n, this distribution is close to Gaussian.
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The Gaussian distribution is uniquely determined by its mean µ and variance V = σ2. The mean
of the sum is equal to the sum of the means, so µ = n ·µ0, where µ0 is the mean of the distribution
used to simulate each ∆xi. For independent random variables, the variance of the sum is equal to
the sum of the variances, so V = n ·V0, where V0 is the variance of the distribution used to simulate
each ∆xi. Thus, σ =

√
V =

√
V0 ·
√
n.

It is well known that for a normal distribution, with very high confidence, all the values are
contained in a k-sigma interval [µ− k · σ, µ+ k · σ]:

− with probability ≈ 99.9%, the value will be in 3-sigma interval,

− with probability ≈ 1− 10−8, the value will be in the 6-sigma interval, etc.

Thus, with high confidence, all the values obtained from simulation are contained in the interval
[µ− k · σ, µ+ k · σ] of width 2k · σ = 2k ·

√
V0 ·
√
n.

For large n, this interval has the size const ·
√
n. On the other hand, we want the range [−∆,∆]

whose width is 2∆ = 2δ · n. So, when n is large, the simulated values occupy a part of the desired
interval that tends to 0:

2k ·
√
V0 ·
√
n

2δ · n
=

const√
n
→ 0. (15)

So, in the independence case, the impossibility is proven.

5. Proof That Realistic Interval Monte-Carlo Techniques Are Not Possible:
General Case

To prove the desired negative result, it is sufficient to consider a simple case. Similarly
to the previous section, to prove the impossibility result in the general case, it is also sufficient to
prove the impossibility for some of the functions.

In this proof, we will consider functions

f(x1, . . . , xn) = s1 · x1 + . . .+ sn · xn, (16)

where si ∈ {−1, 1}.
For each of these functions,

∆y = s1 ·∆x1 + . . .+ sn ·∆xn, (17)

so we have ci = si. Similarly to the previous section, we assume that each of the unknowns ∆xi
takes value from the interval [−δ, δ], for some known value δ > 0.

For each of these functions, |ci| = |si| = 1, so the desired range is the same for all these functions
and is equal to [−∆,∆], where

∆ =
n∑
i=1

|ci| ·∆i = n · δ. (18)
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Towards a precise formulation of the problem. Suppose that we want to find the range
[−∆,∆] with some relative accuracy ε. To get the range from simulations, we need to make sure
that some of the simulated results are ε-close to ∆, i.e., that∣∣∣∣∣

n∑
i=1

si ·∆x(k)
i − n · δ

∣∣∣∣∣ ≤ ε · n · δ, (19)

or, equivalently,

n · δ · (1− ε) ≤
n∑
i=1

si ·∆x(k)
i ≤ n · δ · (1 + ε). (20)

We are interested in realistic Monte-Carlo simulations, for which |∆(k)
i | ≤ δ for all i. Thus, we

always have
n∑
i=1

si ·∆x(k)
i ≤ n · δ < n · δ · (1 + ε). (21)

So, the right-hand inequality is always satisfied, and it is thus sufficient to make sure that we have

n∑
i=1

si ·∆x(k)
i ≥ n · δ · (1− ε) (22)

for some simulation k.
For this inequality to be true with some certainty, we need to make sure that the probability

of this inequality exceed some constant p > 0. Then, if we run 1/p simulations, then with high
probability, the inequality will be satisfied for at least one of these simulations. Thus, we arrive at
the following condition.

Definition. Let ε > 0, δ > 0, and p ∈ (0, 1). We say that a probability distribution on the set of
all vectors

(∆1 . . . ,∆xn) ∈ [−δ, δ]× . . .× [−δ, δ] (23)

is a (p, ε)-realistic Monte-Carlo estimation of interval uncertainty if for every set of values si ∈
{−1, 1}, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) ≥ p. (24)

Main Result. Let δ > 0 and ε > 0. If for every n, we have a (pn, ε)-realistic Monte-Carlo
estimation of interval uncertainty, then pn ≤ β · n · cn for some β > 0 and c < 1..

Comments.

− As we have mentioned, when the probability is equal to p, we need 1/p simulations to get
the desired estimates. Due to the Main Result, to get a realistic Monte-Carlo estimate for the
interval uncertainty, we thus need

1

pn
∼ c−n

β · n
(25)
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simulations. For large n, we have
c−n

β · n
� n+ 1. (26)

Thus, the above results shows that realistic Monte-Carlo simulations require even more
computational time than numerical differentiation. This defeats the main purpose for using
Monte-Carlo techniques, which is – for our problem – to decrease the computation time.

− It is worth mentioning that if we allow pn to be exponentially decreasing, then a realistic Monte-
Carlo estimation of interval uncertainty is possible: e.g., we can take ∆xi to be independent
and equal to δ or to −δ with equal probability 0.5. In this case, with probability 2−n, we get
the values ∆xi = si · δ for which

n∑
i=1

si ·∆xi =

n∑
i=1

δ = n · δ > n · δ · (1− ε). (27)

Thus, for this probability distribution, for each combination of signs si, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) = pn = 2−n. (28)

Proof of the main result. Let us pick some α ∈ (0, 1). Let us denote, by m, the number of
indices i or which si ·∆xi > α · δ. Then, if we have

s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε), (29)

then for n−m indices, we have si ·∆xi ≤ α · δ and for the other m indices, we have si ·∆xi ≤ δ.
Thus,

n · δ · (1− ε) ≤
n∑
i=1

si ·∆xi ≤ m · δ + (n−m) · α · δ. (30)

Dividing both sides of this inequality by δ, we get

n · (1− ε) ≤ m+ (n−m) · α, (31)

hence n · (1− α− ε) ≤ m · (1− α) and thus,

m ≥ n · 1− α− ε
1− α

. (32)

So, we have at least

n · 1− α− ε
1− α

(33)

indices for which ∆xi has the same sign as si (and for which |∆xi| > α · δ). This means that for
the vector corresponding to a tuple (s1, . . . , sn), at most

n · ε

1− α− ε
(34)

indices have a different sign than si.
It is, in principle, possible that the same tuple (∆x1, . . . ,∆xn) can serve two different tuples

s = (s1, . . . , sn) and s′ = (s′1, . . . , s
′
n). However, in this case:
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− going from si to sign(∆xi) changes at most n · ε

1− α− ε
signs, and

− going from sign(∆xi) to s′i also changes at most n · ε

1− α− ε
signs.

Thus, between the tuples s and s′, at most 2 · ε

1− α− ε
signs are different. In other words, for the

Hamming distance

d(s, s′)
def
= #{i : si 6= s′i}, (35)

we have
d(s, s′) ≤ 2 · n · ε

1− α− ε
. (36)

Thus, if

d(s, s′) > 2 · n · ε

1− α− ε
, (37)

then no tuples (∆x1, . . . ,∆xn) can serve both sign tuples s and s′. In this case, the corresponding
sets of tuples for which

s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε) (38)

and
s′1 ·∆x1 + . . .+ s′n ·∆xn ≥ n · δ · (1− ε) (39)

do not intersect. Hence, the probability that the randomly selected tuple belongs to one of these
sets is equal to the sum of the corresponding probabilities. Since each of the probabilities is greater
than or equal to p, the resulting probability is equal to 2p.

If we have M sign tuples s(1), . . . , s(M) for which

d(s(i), s(j)) > 2 · ε

1− α− ε
(40)

for all i 6= j, then similarly, the probability that the tuple (∆x1, . . . ,∆xn) serves one of these sign
tuples is greater than or equal to M · p. On the other hand, this probability is ≤ 1, so we conclude

that M · p ≤ 1 and p ≤ 1

M
.

So, to prove that pn is exponentially decreasing, it is sufficient to find the sign tuples whose
number M is exponentially increasing.

Let us denote β
def
=

ε

1− α− ε
. Then, for each sign tuple s, the number t of all sign tuples s′ for

which d(s, s′) ≤ β · n is equal to the sum of:

− the number of tuples

(
n

0

)
that differ from s in 0 places,

− the number of tuples

(
n

1

)
that differ from s in 1 place, . . . ,

− the number of tuples

(
n

β · n

)
that differ from s in β · n places,
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i.e.,

t =

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n · β

)
. (41)

When β < 0.5 and β ·n < n

2
, the number of combinations

(
n

k

)
increases with k, so t ≤ β ·n·

(
n

β · n

)
.

Here, (
a

b

)
=

a!

b! · (a− b)!
. (42)

Asymptotically,

n! ∼
(n
e

)n
, (43)

so

t ≤ β · n ·

(n
e

)n
(
β · n
e

)β·n
·
(

(1− β) · n
e

)(1−β)·n . (44)

One can see that the term nn in the numerator cancels with the term nβ·n · n(1−β)·n = nn in the
denominator. Similarly, the terms en and eβ·n · e(1−β)·n = en cancel each other, so we conclude that

t ≤ β · n ·
(

1

ββ · (1− β)1−β

)n
. (45)

Here,

γ
def
=

1

ββ · (1− β)1−β = exp(S), (46)

where

S
def
= −β · ln(β)− (1− β) · ln(1− β) (47)

is Shannon’s entropy. It is well known (and easy to check by differentiation) that its largest possible
values is attained when β = 0.5, in which case S = ln(2) and γ = exp(S) = 2. When β < 0.5, we
have S < ln(2), thus, γ < 2, and t ≤ β · n · γn for some γ < 2.

Let us now construct the desired collection of sign tuples s(1), . . . , s(M).

− We start with some sign tuple s(1), e.g., s(1) = (1, . . . , 1).

− Then, we dismiss t ≤ γn tuples which are ≤ β-close to s, and select one of the remaining tuples
as s(2).

− We then dismiss t ≤ γn tuples which are ≤ β-close to s(2). Among the remaining tuples, we
select the tuple s(3), etc.

Once we have selected M tuples, we have thus dismissed t ·M ≤ β · n · γn ·M sign tuples. So, as
long as this number is smaller than the overall number 2n of sign tuples, we can continue selecting.
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This procedure ends when we have selected M tuples for which β · n · γn ·M ≥ 2n. Thus, we
have selected

M ≥
(

2

γ

)n
· 1

β · n
(48)

tuples. So, we have indeed selected exponentially many tuples.
Hence,

pn ≤
1

M
≤ β · n ·

(γ
2

)n
, (49)

i.e.,
pn ≤ β · n · cn, (50)

where
c

def
=

γ

2
< 1. (51)

So, the probability pn is indeed exponentially decreasing. The main result is proven.
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Appendix

A. Why Cauchy Distribution

Formulation of the problem. We want to find a family of probability distributions with the
following property:

− when we have several independent variables X1, . . . , Xn distributed according to a distribution
with this family with parameters ∆1, . . . ,∆n,

− then each linear combination Y = c1 ·X1 + . . . + cn ·Xn has the same distribution as ∆ ·X,

where X corresponds to parameter 1, and ∆ =
n∑
i=1
|ci| ·∆i.

In particular, for the case when ∆1 = . . . = ∆n = 1, the problem becomes even easier to describe,
since then, we only need to find one probability distribution: corresponding to the value 1. In this
case, the desired property of this probability distribution is as follows:

− if we have n independent identically distributed random variables X1, . . . , Xn,

− then each linear combination Y = c1 ·X1 + . . .+ cn ·Xn has the same distribution as ∆ ·Xi,

where ∆ =
n∑
i=1
|ci|.

Let us describe all probability distributions that satisfy this property.

Analysis of the problem. First, we observe that from the above condition, for n = 1 and c1 = −1,
we conclude that −X and X should have exactly the same probability distribution, i.e., that the
desired probability distribution be symmetric with respect to 0 (even).

A usual way to describe a probability distribution is to use a probability density function
ρ(x), but often, it is more convenient to use its Fourier transform, i.e., in probabilistic terms,

the characteristic function χX(ω)
def
= E[exp(i · ω · X)], where E[.] indicates the expected value of

the corresponding quantity and i
def
=
√
−1.

The advantage of using a characteristic function is that for the sum S = X1 + X2 of two
independent variables X1 +X2, we have

χS(ω) = E[exp(i · ω · S)] = E[exp(i · ω · (X1 +X2)] = E[exp(i · ω ·X1 + i · ω ·X2)] =

E[exp(i · ω ·X1) · exp(i · ω ·X2)]. (51)

Since X1 and X2 are independent, the variables exp(i·ω ·X1) and exp(i·ω ·X2) are also independent,
and thus,

χS(ω) = E[exp(i ·ω ·X1) ·exp(i ·ω ·X2)] = E[exp(i ·ω ·X1)] ·E[exp(i ·ω ·X2)] = χX1(ω) ·χX2(ω). (52)

Similarly, for a linear combination Y =
n∑
i=1

ci ·Xi, we have
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χY (ω) = E[exp(i · ω · Y )] = E

[
exp

(
i · ω ·

n∑
i=1

ci ·Xi

)]
= E

[
exp

(
n∑
i=1

i · ω · ci ·Xi

)]
=

E

[
n∏
i=1

exp (i · ω · ci ·Xi)

]
=

n∏
i=1

E[exp(i · (ω · ci) ·Xi] =

n∏
i=1

χX(ω · ci). (53)

The desired property is that the linear combination Y should have the same distribution as ∆ ·X.
Thus, the characteristic function χY (ω) should be equal to the characteristic function of ∆ ·X, i.e.,
to

χ∆·X(ω) = E[exp(i · ω · (∆ ·X))] = E[exp(i · (ω ·∆) ·X)] = χX(ω ·∆). (54)

By comparing expressions (53) and (54), we conclude that for all possible combinations c1, . . . , cn,
the desired characteristic function χX(ω) should satisfy the equality

χX(c1 · ω) · . . . · χX(cn · ω) = χX((|c1|+ . . .+ |cn|) · ω). (55)

In particular, for n = 1, c1 = −1, we get χX(−ω) = χX(ω), so χX(ω) should be an even function.
For n = 2, c1 > 0, c2 > 0, and ω = 1, we get

χX(c1 + c2) = χX(c1) · χX(c2). (56)

The characteristic function should be measurable, and it is known that the only measurable function
with the property (56) has the form χX(ω) = exp(−k ·ω) for some k; see, e.g., (Aczél, 2006). Due to
evenness, for a general ω, we get χX(ω) = exp(−k · |ω|). By applying the inverse Fourier transform,
we conclude that X is Cauchy distributed.

Conclusion. The only distribution for which the independent-case Monte Carlo simulations lead
to correct estimate of the interval uncertainty is the Cauchy distribution.
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Abstract: When we have several results of measuring or estimating the same quantities, it is
desirable to aggregate them into a single estimate for the desired quantities. A natural requirement
is that if the majority of estimates has some property, then the aggregate estimate should have the
same property. It turns out that it is not possible to require this for all possible properties – but
we can require it for bounds, i.e., for properties that the value of the quantity is in between given
bounds a and b. In this paper, we prove that if we restrict the above “voting” approach to such
properties, then the resulting aggregate is an (interval) median. This result provides an additional
justification for the use of median – in addition to the usual justification that median is the most
robust aggregate operation.

Keywords: aggregation, voting aggregation, median, interval median

1. Formulation of the Problem

Need for aggregation. For many real-real problems, there are several different decision making
tools. Each of these tools has its advantages and its limitations (otherwise, if a tool does not have
any advantages, it would not be used). To combine the advantages of different tools, it therefore
desirable to aggregate their results.

Voting as a natural approach to aggregation. One of the most widely used methods of
aggregating several results is voting: if the majority of results satisfy a certain property, then we
conclude that the actual value has this property; see, e.g., (Easley and Kleinberg, 2010; Regenwetter,
2009; Tang, 2015) and references therein.

For example, in a medical classification problem, if most classifiers classify the person’s data as
corresponding to pneumonia, we conclude that this person has pneumonia.

What we do in this paper. In this paper, we analyze how voting can be used to aggregate
several numerical estimates.

This is not easy. To understand why this task is not easy, let us recall that a similar idea has
been actively used in Artificial Intelligence.

Voting is closely related to the notions of “typical” in Artificial Intelligence. Voting is
closely related to the notion of a “typical” object of a class, the notion actively studied in Artificial

c© 2016 by authors. Printed in Germany.
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Intelligence. Indeed, what is an intuitive meaning of a term “typical professor”? A natural meaning
is that if most professors have some property, that a “typical” professor must have this property.
For example, if most professors are absent-minded, then we expect a “typical” professor to be
absent-minded as well.

If we know that a certain professor is a “typical” professor – or, in other words, not an abnormal
professor – then whatever property normally holds for professors should hold for this particular
professor as well. This line of reasoning is known as non-monotonic reasoning, and it is very
important in Artificial Intelligence; see, e.g., (Halpern, 2003; Jalal-Kamai et al., 2012; Kreinovich,
2004; Kreinovich, 2012; Longpré and Kosheleva, 2012).

Related problem: no one is perfectly typical. This analogy can help us illustrate the problem
related to the voting approach: while some professors may be more or less typical, no one is
absolutely typical. For example, even if it turns out that we have found a professor who is typical
(in the voting sense) in his/her appearance, in his/her habits, this professor’s specific area of research
– no matter what it is – will automatically make this professor not typical.

Indeed, it could be theoretical physics – but clearly, most professors are not theoretical physicists.
It could be computational linguistics – but most professor are not computational linguists, etc.

This problem is why in Artificial Intelligence, there is a vast and ongoing literature analyzing
how best to describe typical (not abnormal) objects.

2. Main Definitions and the First Result Explaining Why Voting Aggregation Is Not
Easy

What is given. In the simplest case, we have several estimates x1, . . . , xn for the value of some
physical quantity. We would like to combine these estimates into a single estimate x.

In more complex situations, we have several quantities that we would like to estimate. Let us
denote the number of these quantities by q. In this case, we have several tuples x1, . . . , xn, each of
which estimates all q quantities: xi = (xi1, . . . , xiq). Our goal is to aggregate these estimates into a
single estimate x = (e1, . . . , eq).

Let us describe voting aggregation in precise terms. Both for the 1-D case and for the
multi-D case, we would like to select an estimate x that satisfies the following condition:

if the majority of the inputs x1, . . . , xn satisfies a property P ,
then x should satisfy this property.

In mathematics, properties are usually described by sets: namely, each property P can be
described by the set S of all the objects that satisfy this property. In these terms, the above
condition takes the following form:

if the majority of the inputs x1, . . . , xn belong to a set S,
then x should belongs to this same set S.

In principle, we can formulate this condition for all possible sets, but in this case, as we have
mentioned earlier, there may not exist any aggregate x that satisfies this property. Thus, it make
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sense to consider the possibility of restricting this condition only to sets S from a certain class S
of sets. So, we arrive at the following definition.

Definition 1. Let q ≥ 1, let S be a class of subsets of IRq, and let x1, . . . , xn ∈ IRq.

− We say that an element x ∈ IRq is a possible S-aggregate of the elements x1, . . . , xn if the
following condition holds:

for every S ∈ S, if the majority of xi are in this set,
then x should be in this set.

− The set of all possible S-aggregates is called the S-aggregate of the elements x1, . . . , xn.

Let us first consider the case when we allow all properties (i.e., all sets). Let us first

consider the case when we allow all possible sets S ⊆ IRq, i.e., when S is equal to the class U
def
= 2IR

q

of all subsets of IRq. In this case, as the following result shows, voting aggregation does not work –
since the result set is often empty:

Proposition 1. For every q ≥ 1 and n ≥ 3, if all n elements x1, . . . , xn are different from each
other, then the U -aggregate of the elements x1, . . . , xn is empty.

Proof. We will prove this by contradiction.

1◦. Let us assume that the U -aggregate set is not empty. This means that there is an element x
which is a possible U -aggregate of x1, . . . , xn.

2◦. All elements xi belong to the set {x1, . . . , xn}; thus, the majority of elements xi belongs to this
set as well. So, by definition of a possible aggregate, x should belong to this set. Thus, we must
have x = xi for some i.

3◦. Let us now consider the set of all the elements x1, . . . , xn except for the element xi, i.e., the
set {x1, . . . , xi−1, xi+1, . . . , xn}. Out of n elements x1, . . . , xn, n− 1 belong to this set. Since n ≥ 3,
these elements constitute the majority. Thus, by definition of a possible aggregate, the element x
should belong to this new set – but since x = xi, it doesn’t.

This contradiction proves that the U -aggregate set is indeed empty.

Let us describe all the cases when the U-aggregate set is not empty. We can actually
describe all the cases when the U -aggregate set is not empty, and explicitly describe how this
aggregate set looks like. We will start with the cases n = 1 and n = 2 and then consider cases when
n ≥ 3.

Proposition 2. For every q ≥ 1:

− when n = 1 then the U -aggregate set of x1 is {x1};

− when n = 2, then the U -aggregate set of x1, x2 is {x1, x2}.
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Proof.

1◦. For n ≤ 2, the majority of xi means all the elements xi. Thus, the above condition means that
for every set S, if xi ∈ S for all i, then we should have x ∈ S. This is trivially true for all elements
xi, so all elements xi are indeed possible U -aggregates of x1, . . . , xn.

2◦. To complete the proof, let us show that no other elements are possible U -aggregates. Indeed, if
x is a possible U -aggregate, then for the set S = {x1, . . . , xn}, we have xi ∈ S for all i, and thus,
we should have x ∈ S. So, x must indeed coincide with one of the elements xi.

The proposition is proven.

Proposition 3. For every q ≥ 1 and for all odd n ≥ 3:

− if the majority of elements x1, . . . , xn are equal to each other, then the U -aggregate set of
x1, . . . , xn consists of this common element;

− in all other cases, the U -aggregate set is empty.

Proof.

1◦. Let us first consider the case when the majority of elements xi are equal to each other.

1.1◦. Without losing generality, we can assume that these elements are x1 = . . . = xk for some
k > n/2. In this case, the majority of elements xi belong to the set {x1}. Thus, every possible
U -aggregate x must belong to this set, and hence, x must be equal to x1.

1.2◦. Let us now prove that the element x1 is a possible U -aggregate.
Indeed, if the majority of elements xi belong to the set S, this means that at least some of the

elements x1, . . . , xk must belong to this set – otherwise, we would not have a majority. Since the
element x is equal to all of them, x belongs to this set S as well. Thus, x1 is indeed a possible
U -aggregate.

2◦. Let us now consider the case when we do not have a majority of elements that are equal to each
other. Let us show that in this case, the U -aggregate set is indeed empty.

Indeed, let x be a possible U -aggregate set. Since all elements xi (and, thus, the majority of
them) belong to the set {x1, . . . , xn}, this implies that we should have x ∈ {x1, . . . , xn}, i.e., x must
be equal to one of the original inputs: x = xi for some i.

Since we do not have a majority of elements that are equal to each other, there are fewer than n/2
elements which are equal to xi. Thus, the majority of elements x1, . . . , xn belong to the difference
set {x1, . . . , xn} − {xi}. So, by the definition of a possible U -aggregation, the possible U -aggregate
x should also belong to this set – but since x = xi, it doesn’t.

The contradiction proves that in this case, the U -aggregate set is indeed empty.

Proposition 4. For every q ≥ 1 and for all even n ≥ 4:

− if the majority of elements x1, . . . , xn are equal to each other, then the U -aggregate set of
x1, . . . , xn consists of this common element;
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− if half of the elements x1, . . . , xn are equal to an element a, and the other half is equal to
another element b, then the U -aggregate set is equal to {a, b};

− if exactly half of the elements x1, . . . , xn is equal to an element a, and not all other elements
are equal to each other, then the U -aggregate set is equal to {a};

− in all other cases, the U -aggregate set is empty.

Proof. The first and the last cases are proven in exactly the same way as in the proof of
Proposition 3. Let us therefore consider the remaining two cases.

1◦. Let us first consider the case when half of the elements x1, . . . , xn are equal to an element a,
and the other half is equal to another element b.

1.1◦. In this case, all elements xi belongs to the set {a, b}. Thus, a possible U -aggregate x should
also belong to this set. Thus, it should be equal either to a or to b.

1.2◦. To complete the proof for this case, we need to prove that both a and b are indeed possible
U -aggregates.

Indeed, if the majority of the elements xi belong to a set S, then it cannot be only elements
which are equal to a, since they do not form the majority. Thus, the set S must contain at least
one element equal to b – i.e., we must have b ∈ S.

Similarly, if the majority of the elements xi belong to a set S, then it cannot be only elements
which are equal to b, since they do not form the majority. Thus, the set S must contain at least one
element equal to a – i.e., we must have a ∈ S. So, indeed, both a and b are possible U -aggregates.

So, for this case, the proposition is proven.

2◦. Let us now consider the case when exactly half of the elements x1, . . . , xn are equal to an element
a, and not all other elements are equal to each other.

Without losing generality, we can describe this case as x1 = . . . = xn/2 = a, and xi 6= a for
i > n/2.

Since not all elements xi, i > n/2, are equal to each other, there is an element xj which is
different from xn/2+1 (and both are different from a).

2.1◦. Let us first prove that every U -aggregate element x must be equal to a.

Indeed, in this case, at least n/2 + 1 (majority) of elements xi belong to the set {a, xn/2+1}, so,
for every U -aggregate x, we must have x ∈ {a, xn/2+1}. Thus, x should be either equal to a or to
xn/2+1.

Similarly, at least n/2 + 1 (majority) of elements xi belong to the set {a, xj}, so, for every
U -aggregate x, we must have x ∈ {a, xj}. Thus, x should be either equal to a or to xj .

Since we have selected xj for which xj 6= xn/2+1, the condition that x = a or x = xj is not
satisfied when x = xn/2+1. Thus, the option x = xn/2+1 is not possible.

So, we conclude that, indeed, every U -aggregate element x must be equal to a.

2.2◦. To complete the proof, let us show that the element a is indeed a possible U -aggregate.
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Indeed, if the majority of elements x1, . . . , xn belong to a set S, this cannot be only elements
different from a, since they do not form a majority. Thus, at least one of the elements equal to a
must also belong to the set S, i.e., we should have a ∈ S. Thus, a is indeed a possible U -aggregate.

Discussion. Since in general, considering all the sets does not lead to a meaningful aggregation,
we have to only allow sets from a certain family.

Structure of the paper. Let us start with considering all possible intervals. In Section 3, we
analyze the 1-D case. In this case, as we will show, voting aggregation results in a median. In
Section 4, we show that in the 1-D case, we cannot expand beyond intervals.

In Section 5, we extend the interval result to a multi-D case – and we also show that we cannot
extend beyond multi-D intervals.

3. 1-D Interval-Based Voting Aggregation Leads to (Interval) Median

Let us first clarify what we mean by intervals.

Definition 2. By an interval, we mean a finite closed interval [a, b] = {x : a ≤ x ≤ b} corresponding
to real numbers a ≤ b. The class of all interval will be denoted by I.

Now, we need to clarify what we mean by a median.

Definition 3. For every sequence of real numbers x1, . . . , xn, let x(1) ≤ . . . ≤ x(n) denote the result
of sorting the numbers xi in increasing order.

− when n is odd, i.e., when n = 2k + 1 for some integer k, then by a median, we mean the value
x(k+1);

− when n is even, i.e., when n = 2k for some integer k, then by a median, we mean the interval
[x(k), x(k+1)].

The median will also be called an interval median.

Proposition 5. For every sequence of numbers x1, . . . , xn, the I-aggregate set is equal to the median.

Comment. Median is indeed often used in data processing, since it is the most robust aggregation –
i.e., the aggregation which is the least vulnerable to possible outliers; see, e.g., (Huber, 2004; Huber
and Ronchetti, 2009; Rousseeuw and Leroy, 1987). Not surprisingly, median is used in econometrics,
as a more proper measure of “average” (“typical”) income than the mean (OECD, 2016) – since
a single billionaire living in a small town increases its mean income without affecting the living
standards of its inhabitants (see also (Kreinovich et al., 2015)).

Proof. In terms of intervals, the condition for a number x to be a possible I-aggregate takes the
following form:

for every interval [a, b], if the majority of the elements x(i) belong to this interval,
then x should also belong to this interval.
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1◦. Let us first prove that every possible U -aggregate x should belong to the median set.

1.1◦. Indeed, if n = 2k + 1, then the majority of elements x(i) belong to the interval [x(1), x(k+1)]:
namely, k + 1 elements x(1) ≤ . . . ≤ x(k+1). Thus, every possible U aggregate x must belong to the
same interval, and thus, we must have x ≤ x(k+1).

Similarly, the majority of elements x(i) belong to the interval [x(k+1), x(n)]: namely, k+1 elements
x(k+1) ≤ . . . ≤ x(n). Thus, every possible U aggregate x must belong to the same interval, and thus,
we must have x ≥ x(k+1).

From x ≤ x(k+1) and x ≥ x(k+1), we conclude that x = x(k+1), i.e., x coincides with the median.

1.2◦. If n = 2k, then the majority of elements x(i) belong to the interval [x(1), x(k+1)]: namely, k+ 1
elements x(1) ≤ . . . ≤ x(k+1). Thus, every possible U aggregate x must belong to the same interval,
and thus, we must have x ≤ x(k+1).

Similarly, the majority of elements x(i) belong to the interval [x(k), x(n)]: namely, k + 1 elements
x(k) ≤ . . . ≤ x(n). Thus, every possible U aggregate x must belong to the same interval, and thus,
we must have x ≥ x(k).

So, we conclude that x(k) ≤ x ≤ x(k+1), i.e., that x is indeed an element of the median interval
[x(k), x(k+1)].

2◦. To complete the proof, let us prove that every element of the interval median is indeed a possible
I-aggregate. For this, we need to show that if an interval [a, b] contains the majority of elements
x(i), then it contains the interval median.

Let us prove it by considering two possible situations: when n is odd and when n is even.

2.1◦. Let us show that in the odd case, when n = 2k + 1, if the interval [a, b] contains the majority
of the elements x(i), then x(k+1) ∈ [a, b], i.e., a ≤ x(k+1) and x(k+1) ≤ b.

We will prove both inequalities by contradiction. If a > x(k+1), then the interval [a, b] cannot
contain any of the k + 1 elements x(1) ≤ . . . ≤ x(k+1), and thus, must contain no more than k
remaining elements x(k+2), . . . , x(n) – which do not form a majority.

Similarly, if b < x(k+1), then the interval [a, b] cannot contain any of the k+ 1 elements x(k+1) ≤
. . . ≤ x(n), and thus, must contain no more than k remaining elements x(1), . . . , x(k), which also do
not form a majority.

Thus, if the interval [a, b] contains the majority of elements x(i), then it must contain the median
x(k+1) – and so, the median is a possible I-aggregate of the values x1, . . . , xn.

2.2◦. Let us show that in the even case, when n = 2k, if the interval [a, b] contains the majority of
the elements x(i), then [x(k), x(k+1)] ⊆ [a, b], i.e., a ≤ x(k) and x(k+1) ≤ b.

We will prove both inequalities by contradiction. If a > x(k), then the interval [a, b] cannot
contain any of the k elements x(1) ≤ . . . ≤ x(k), and thus, must contain no more than k remaining
elements x(k+1), . . . , x(n) – which do not form a majority.

Similarly, if b < x(k+1), then the interval [a, b] cannot contain any of the k elements x(k+1) ≤
. . . ≤ x(n), and thus, must contain no more than k remaining elements x(1), . . . , x(k), which also do
not form a majority.
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Thus, if the interval [a, b] contains the majority of elements x(i), then it must contain the median
[x(k), x(k+1)] – and so, every element from the interval median is a possible I-aggregate of the values
x1, . . . , xn.

The proposition is proven.

What if we require strong majority? What if instead of requiring that a typical element x
satisfy all the properties that are satisfied by a simple majority of inputs, we instead require that
the property P (x) is triggered only when we have a strong majority: e.g., when the proportion of
values xi satisfying this property is larger than a certain threshold t > 0.5?

In this case, we have a similar result.

Definition 4. Let q ≥ 1, let S be a class of subsets of IRq, let x1, . . . , xn ∈ IRq, and let t be a
number between 0.5 and 1.

− We say that an element x ∈ IRq is a possible t-S-aggregate of the elements x1, . . . , xn if the
following condition holds:

for every S ∈ S, if more than t · n of xi are in this set,
then x should be in this set.

− The set of all possible t-S-aggregates is called the t-S-aggregate set of the elements x1, . . . , xn.

Proposition 6. For every sequence of numbers x1, . . . , xn, and for every t, the t-I-aggregate set is
equal to the interval [x(n−k+1),(k) ], where k is the smallest integer greater than t · n.

Proof is similar to the proof of Proposition 5.

Another possible derivation of a median. Interval median can be also derived from other
natural conditions:

− that it is a continuous function of x1, . . . , xn,

− that it is invariant with respect to arbitrary strictly increasing or strictly decreasing re-scalings;
such re-scalings which make physical sense: e.g., we can measure sound energy in Watts or in
decibels – which are logarithmic units; and

− that this is the narrowest such operation – else we could, e.g., take an operation returning the

whole range

[
min
i

xi,max
i

xi

]
.

Definition 5. Let n ≥ 1 be fixed. By an aggregation operation, we mean a mapping that maps each
tuple of real numbers x1, . . . , xn into an interval A(x1, . . . , xn) = [a(x1, . . . , xn), a(x1, . . . , xn)], with
the following properties:

1. this operation is continuous, i.e., both functions a(x1, . . . , xn) and a(x1, . . . , xn) are continuous;

2. this operation is scale-invariant, meaning that:
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• for each strictly increasing continuous function f(x), we have a(f(x1), . . . , f(xn)) =
f(a(x1, . . . , xn)) and a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn)), and

• for each strictly decreasing continuous function f(x), we have a(f(x1), . . . , f(xn)) =
f(a(x1, . . . , xn)) and a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn));

3. this operation is the narrowest meaning that if for some operation B(x1, . . . , xn) that sat-
isfies the properties 1 and 2, we have B(x1, . . . , xn) ⊆ A(x1, . . . , xn) for all tuples, then
B(x1, . . . , xn) = A(x1, . . . , xn).

Proposition 7. Interval median is the only aggregation operation in the sense of Definition 5.

Proof.

1◦. One can easily check that the interval median operation M(x1, . . . , xn) satisfies the properties
1 and 2 from Definition 5.

2◦. To complete our proof, it is thus sufficient to prove that for every operation A(x1, . . . , xn) that
satisfies the properties 1 and 2, we have M(x1, . . . , xn) ⊆ A(x1, . . . , xn).

Since the operation A(x1, . . . , xn) is continuous, and every input (x1, . . . , xn) with equal elements
xi = xj can be represented as a limit of inputs in which all elements are different, it is sufficient to
consider the case when all the elements in the input are different, i.e., when x(1) < x(2) . . . < x(n).

We can now form a strictly increasing transformation f(x) for which f(x(i)) = x(i), and f(x) 6= x
for all other numbers x. Indeed:

− for x(i) ≤ x ≤ x(i+1), we can take

f(x) = x(i) +

(
x− x(i)

x(i+1) − x(i)

)2

· (x(i+1) − x(i)),

− for x ≤ x(1), we can take f(x) = x(1) − 2 · (x(1) − x), and

− for x ≥ x(n), we take f(x) = x(n) + 2 · (x− x(n)).

For this function, since f(xi) = xi for all i, the condition a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn))
implies that a(x1, . . . , xn) = f(a(x1, . . . , xn)), i.e., that f(z) = z for z = a(x1, . . . , xn). By our
selection of the function f(x), this means that z = a(x1, . . . , xn) must coincide with one of the
values x(i). Similarly, the value a(x1, . . . , xn) must coincide with one of the values x(j). Thus, we
have A(x1, . . . , xn) = [a(x1, . . . , xn), a(x1, . . . , xn)] = [x(i), x(j)] for some i and j.

From continuity, we can conclude that the corresponding indices i and j must be the same for all
the tuples x1, . . . , xn in which all elements are different – otherwise, we would have a discontinuity.

In particular, this means that for the tuple xi = i, we have A(1, 2, . . . , n) = [i, j]. The strictly
decreasing function f(x) = n + 1 − x keeps the tuple intact. Thus, scale-invariance implies that
A(1, 2, . . . , n) = [n+1−j, n+1−i]. This means that j = n+1−i, i.e., that we have A(x1, . . . , xn) =

[x(i), x(n+1−i)]. Here, we must have i ≤ n + 1− i, i.e., 2i ≤ n + 1 and i ≤ n + 1

2
.

REC 2016 - O. Kosheleva and V. Kreiovich

293



O. Kosheleva and V. Kreiovich

For odd n = 2k + 1, this means that i ≤ k + 1, thus j = n + 1 − i ≥ k + 1, so indeed,
M(x1, . . . , xn) = x(k+1) ∈ [x(i), x(n+1−i)] = A(x1, . . . , xn).

For even n = 2k, this means that i ≤ k, thus j = n + 1− i ≥ k + 1, so indeed, M(x1, . . . , xn) =
[x(k), x(k+1)] ⊆ [x(i), x(n+1−i)] = A(x1, . . . , xn).

The proposition is proven.

4. 1-D Case: Can We Expand Beyond Intervals?

One can easily check that in our analysis, instead of closed intervals, we can consider general convex
subsets of the real line – i.e., subsets S that, for every two real numbers a and x′, contain all the
numbers between x and x′. In addition to closed intervals, convex sets include open intervals,
semi-open intervals, and intervals with infinite endpoints.

Can we go beyond intervals? It turns out that we cannot, as the following result shows.

Proposition 8. Let a class S contain, in addition to all the intervals, a non-convex set S0. Then,
for n = 3 and for every n ≥ 5, there exists values x1, . . . , xn for which the S-aggregate set is empty.

Proof.

1◦. The fact that the set S0 is not convex means that there exist points a < b < c for which a, c ∈ S0

but b 6∈ S0. To construct the desired counterexample, we will then form sequences xi in which some
elements are equal to a, some to b, and some to c.

We will consider three possible cases: when n = 3k, when n = 3k + 1, and when n = 3k + 2.

2◦. Let us first consider the case when n = 3k. In this case, we take k values equal to a, k values
equal to b, and k values equal to c.

2k of these values form a majority. Thus, the majority of elements xi belong to the interval [a, b],
so any possible S-aggregate x must also belong to this interval. Similarly, the majority of elements
xi belongs to the interval [b, c], so x must also belong to the interval [b, c]. From x ∈ [a, b] and
x ∈ [b, c], we conclude that x ∈ [a, b] ∩ [b, c] = {b}, i.e., that x = b. However, also, the majority of
elements are equal to a or to c and thus, belong to the set S0. So, we should conclude that x ∈ S0

– but the element x = b does not belong to S0.
This contradiction shows that in this case, S-aggregate set is indeed empty.

3◦. When n = 3k + 1 and n > 4, we get k ≥ 2. In this case, we select k elements equal to a, k
elements equal to b, and k + 1 elements equal to c. If we pick only two of these three groups of
elements, we get at least 2k elements. So, to continue with the arguments similar to what we had
in Part 2 of this proof, it is sufficient to make sure that 2k elements form a majority, i.e., that

2k >
3k + 1

2
. This inequality is equivalent to 4k > 3k + 1 and to k > 1 and is, thus, true. So, this

case is proven as well.

4◦. When n = 3k + 2 and n > 4, we get k ≥ 1. In this case, we select k elements equal to a, k + 1
elements equal to b, and k + 1 elements equal to c. If we pick only two of these three groups of
elements, we get at least 2k + 1 elements. So, to continue with the arguments similar to what we
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had in Part 2 of this proof, it is sufficient to make sure that 2k + 1 elements form a majority, i.e.,

that 2k + 1 >
3k + 2

2
. This inequality is equivalent to 4k + 2 > 3k + 2 and to k > 0 and is, thus,

always true. So, this case is proven as well.

The proposition is proven.

Discussion. The above proposition excluded values n = 1, n = 2, and n = 4. For n = 1 and n = 2,
as we have mentioned earlier, all the values xi are possible aggregates even when we consider all
possible sets S.

For n = 4, it is also possible to have a non-convex set S0 for which the (I ∪ {S0})-aggregate set
is always non-empty.

Proposition 9. For n = 4, there exists a non-convex set S0 for which the (I ∪ {S0})-aggregate set
is always non-empty.

Proof. Indeed, let us take a 2-point set S0 = {0, 1}. In this case, majority means at least 3 elements.
So, we must consider tuples of 4 elements in which 3 are equal to 0 or 1.

For n = 4, the interval median is the interval [x(2), x(3)]. All these elements are possible I-
aggregates. So, prove our result, it is sufficient to show that at least one of them is also a possible
{S0}-aggregate.

If two or fewer element xi are equal to 0 or 1, then the S0-related condition does not require
anything from a possible aggregate element. The only time when this condition needs to be taken
into account is when 3 out of the 4 elements x(1), . . . , x(4) are equal to 0 or 1. In this case, however,
at least one of the bounds x(2) and x(3) is equal to 0 or 1, and thus, belongs to the set S0. This bound
is therefore a possible {S0}-aggregate – thus, the (I ∪ {S0})-aggregate set is indeed non-empty.

The proposition is proven.

5. Multi-D Interval-Based Voting Aggregation

Discussion. Let us now consider the multi-D situation. In this case, a natural multi-D analog of
intervals are boxes.

Definition 6. For every q ≥ 1, by a box, we mean a set [a1, b1] × . . . × [aq, bq], where [ai, bi] are
intervals. The class of all boxes will be denoted by B.

Proposition 10. For every sequence of tuples x1, . . . , xn, the B-aggregate set is the box

M1 × . . .×Mq,

where for every i, Mi is the interval median of the i-th components x1i, . . . , xni.

Proof.

1◦. Let us first prove that every possible B-aggregate tuple belongs to the median box M1×. . .×Mq.

Let us fix one of the dimensions. Without losing generality, we can assume that this dimension
is the first one. Then, we consider numbers x11, . . . , xn1.
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For all other dimensions j 6= 1, let us consider the largest possible boxes

[Aj , Bj ]
def
=

[
min
k

(xkj),max
k

(xkj)

]
that contain all given values xkj .

For each possible B-aggregate tuple x = (e1, . . . , eq), the desired property holds for all the boxed
of the type [a1, b1]× [A2, B2]× . . .× [Aq, Bq]. Since all other intervals forming this box are the largest
possible, the condition that a tuple xi is contained in this box is equivalent to the condition that
xi1 ∈ [a1, b1].

Thus, for these boxes, the definition of a possible B-aggregate of the tuples x1, . . . , xn implies
that the first component e1 of the tuple x is a possible I-aggregate of the components x11, . . . , xn1.
We already know that this implies that e1 belongs to the interval median M1 of these components.

Similarly, we can prove that e2 belongs to M2, etc., thus indeed x ∈M1 × . . .×Mq.

2◦. Vice versa, let us prove that every tuple x ∈M1 × . . .×Mq is a possible B-aggregate.
Indeed, let x = (e1, . . . , eq) ∈M1× . . .×Mq, and let us assume that the majority of the tuples xi

belong to the box B = [a1, b1]× . . .× [aq, bq]. This implies, for every component i, that the majority
of the values x1i, . . . , xni belong to the interval [ai, bi]. We already know, from the 1-D case, that
this implies that ei ∈ [ai, bi] for every i. Thus, we indeed have

x = (e1, . . . , eq) ∈ [a1, b1]× . . .× [aq, bq] = B.

The proposition is proven.

Can we replace boxes with more general sets? Can we use more general sets, e.g., convex
polytopes? In general, no, and here is a simple 2-D counter-example.

Definition 7. Let P denote the class of all convex polytopes.

Proposition 11. For q ≥ 2, and for n = 3 or n ≥ 5, there exist an input x1, . . . , xn for which the
P -aggregate set is empty.

Proof. For n = 3, let us have x1 = (0, 0, 0, . . . , 0), x1 = (0.1, 0.9, 0, . . . , 0), and x3 = (1, 1, 0, . . . , 0).
Clearly here,

− the median M1 of the first components 0, 0.1, and 1 is 0.1, and

− the median M2 of the second components 0, 0.9, and 1 is 0.9.

For all other components, the median of the values 0, 0, and 0 is clearly 0.
Thus, the median box M1×M2×M3× . . .×Mq consists of a single point x2 = (0, 1.0.9, 0, . . . , 0).
Here, the majority of the points (namely, x1 and x3) belong to the convex straight line segment

S = {(x, x, 0, . . . , 0) : 0 ≤ x ≤ 1}, but the median does not belong to this segment – and thus, if
we add this segment to boxes, the resulting aggregate set will be empty.

For general n, we can have several points equal to x1 = (0, 0, 0, . . . , 0), several points equal to
x1 = (0.1, 0.9, 0, . . . , 0), and several points equal to x3 = (1, 1, . . . , 0) – just as we had in the proof
of Proposition 8.
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The proposition is proven.
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Abstract: Solid oxide fuel cells (SOFCs) represent a promising technology in the energy sector.
One of their advantages is high efficiency. Improvements are necessary, for example, to be able to
reduce their operating temperatures or to speed up starting times. Developing efficient control-
oriented models for the SOFC temperature has also been in the focus of ongoing research. The goal
here is to devise (global) dynamic models valid for a wide range of operating conditions instead of
obtaining (linear) approximations of the behavior only for a certain mode of operation. The use
of methods with result verification helps to address reliability of SOFC models and to take into
account bounded uncertainty.

Dynamic SOFC models are systems of differential equations, the parameters of which have to be
fitted to the available sensor data (usually, thousands of measurements). Normally, such differential
equations do not have analytical solutions if we keep in mind the goal of devising models suitable
for a wide range of operating conditions. In this paper, we point out two simplification possibilities
possessing closed-form solutions along with their areas of validity. Moreover, we study their potential
with respect to uncertainty handling with the focus on simulation. We perform a sensitivity analysis
for different variants of the suggested simplifications. Finally, we consider uncertainty of different
magnitudes in heat capacities of gases, which we propagate through the system using interval, affine
and Taylor model based methods.

Keywords: methods with result verification, optimization, simulation, UniVerMeC, SOFC

1. Introduction

Modern engineering tasks pose high requirements on safety and reliability of a manufactured system.
To check such requirements, developers often have to work with computer simulations of the system
instead of the system itself (or even its prototype) in order to keep the costs low. For that purpose,
a mathematical model for the system in question is developed and implemented on a computer.
However, both the mathematical model of a complex system and its implementation are in general
inexact and could introduce a considerable inaccuracy into the simulated outcome. Ideally, this
inaccuracy has to be taken into account while checking the above mentioned requirements so that
system verification, validation and uncertainty quantification gain more and more importance. In
the last decades, the techniques and methodologies for that purpose initially suggested, for example,
in (AIAA, 1998), have been studied, improved and extended continuously (e.g., (Oberkampf at al.,
2003; Auer and Luther, 2009; Henninger et al., 2010)).

c© 2016 by authors. Printed in Germany.
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Assuming that the mathematical model is accurate enough, verification answers the question of
whether the computer-obtained (numerical) outcome is the correct result of the model. That is, the
question of whether the mathematical model and its associated implementation actually produce
realistic results remains unanswered during verification, to be handled separately during system
validation. Uncertainty handling helps to account for inherent stochasticity in or lack of knowledge
about the system. For example, it is well-known that physical quantities such as lengths or masses
can only be measured with a certain (small) inaccuracy so that the result is actually not a single
real number but a (continuous) set of numbers. Methods for forward uncertainty quantification are
able to propagate such input through the system, providing (an approximation of) the resulting
output set.

A less widely known possibility to deal with inaccuracies in the model is to use methods
with result verification, for example, interval analysis (Moore et al., 2009). Such methods prove
mathematically that the outcome of a computer simulation is correct with respect to the un-
derlying mathematical model. As a result, they usually supply a set of machine numbers which
with absolute certainty contains the exact model outcome. Almost as a by-product, methods with
result verification allow us to propagate bounded uncertainty in parameters directly through the
implementation of the mathematical model (provided that the appropriate implementation exists).
A common drawback is the possibility of too conservative bounds for the solution sets (e.g., between
−∞ and +∞) resulting from the dependency problem or the wrapping effect (Lohner, 2001).

Current research (Rauh et al., 2015; Auer et al., 2012) shows that interval analysis helps to
improve and develop control-oriented models for solid oxide fuel cells (SOFC) with the focus
on reliability and uncertainty quantification. SOFCs are devices converting chemical energy into
electricity using ceramics as the electrolyte. Working at high temperatures, they are sensitive to
overheating, but can theoretically achieve the overall efficiency of up to 85%. General research goals
in this area are, for example, the reduction of operating temperatures or a speed-up in the starting
times. In recent years, developing efficient control-oriented models for the temperature of SOFCs
has also been in the focus of ongoing research, see (Huang et al., 2012; Rauh et al., 2014). The goal
here is to devise (global) dynamic models valid for a wide range of operating conditions instead of
obtaining (linear) approximations of the behavior only for a certain mode of operation.

Dynamic SOFC models are systems of differential equations with many unknown parameters,
for example, heat capacities of the involved gases. These quantities have to be chosen in such
a way as for the model to reflect the experimental data (usually, thousands of measurements).
The traditional approach in this case is to use the least squares optimization for parameters. One
difficulty is that the differential equations representing the mathematical SOFC model do not have
analytical solutions. That is, to measure the difference between the modeled and experimental
result, which is necessary for the objective function of the least squares method, the modeled
solution is either approximated by an analytical expression or obtained numerically, increasing the
overall imprecision (cf. Section 2). Another difficulty is the necessity to compute the sum of squares
of such differences for a large number of measurements, leading to various numerical problems.

An obvious approach to solve the first problem is to simplify the available models. In principle,
it could be contradictory to the goal of obtaining models valid under various operating conditions.
In (Auer at al., 2015), we pointed out two simplification possibilities for general SOFC models along
with their corresponding validity areas. For these simplifications, we derived a closed form solution
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and assessed the performance. In this paper, we carry out a sensitivity analysis for both variants and
study their potential with respect to uncertainty handling (corresponding to the second difficulty
mentioned above) using methods with result verification, in particular, Taylor models (Berz, 1995)
and affine forms (de Figueiredo and Stolfi, 2004). Throughout the paper, we rely on the framework
UniVerMeC (Kiel, 2014) which allows us to use the same models with different kinds of verified
or floating point methods in an efficient way.

The structure of the paper is as follows. In the next section, we give a very brief overview of the
theory on parameter identification for SOFC models. This does not include the details on how SOFC
models are actually obtained, which can be found elsewhere (Huang et al., 2012). Although methods
with result verification are less established in the engineering community, they are well-known in
general, so that we omit their description and refer interested readers to (Moore et al., 2009). We
specify the kinds of possible SOFC models from the point of view of verification and validation
analysis as well as our understanding of the sensitivity analysis in this case in the remainder of
Section 2. Section 3 provides the details on the above-mentioned simplification possibilities. In
Section 4, we describe the most important features of UniVerMeC and use this tool to actually
carry out the sensitivity analysis along with uncertainty quantification. In particular, we explore
the potential for overestimation reduction provided by result verification with dependency tracking.
A summary of the achieved results and an outlook on our future work conclude this paper.

2. Parameter Identification for SOFC Models

A model of an actual SOFC test rig consists of several subsystems each of which is modeled
separately. They describe the behavior of the SOFC stack with respect to its thermodynamics,
fluid mechanics, or electrochemistry. In this paper, we consider only the temperature model (Rauh
et al., 2014; Rauh et al., 2015) based on general techniques from (Huang et al., 2012; Bove and
Ubertini, 2008).

2.1. Modeling the SOFC Temperature

The overall procedure consists of three phases. First, a system of equations is developed to describe
the temperature based on heat flow/energy balances over finite domains (“early lumping”). This
system is used in combination with the finite volume method to obtain a system of ordinary
differential equations (ODEs) for the temperature of the stack (including the behaviour of the
preheaters) in the second step. The dimension of the resulting initial value problem (IVP) for the
ODEs depends on the number of preheaters and on the coarseness of the discretization we consider.
The IVP is used as the basis for the subsequent simulation and control of the SOFC stack in order
to obtain global behaviour, in contrast to the traditional methodology (Bove and Ubertini, 2008)
locally simplifying the system even further.

In this section, we focus on the third step, the parameter identification for the ODE-based
thermal model using the least squares minimization. In general, there are many parameters needing
identification, for example, specific heat capacities of the involved gases, reaction enthalpies or coef-
ficients of heat convection. The first parameter group is usually quite large, since it is assumed that
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a certain heat capacity cgas is not a constant, but itself depends on the temperature. Since the actual
dependency is unknown, it is approximated by polynomials of the second order in temperature θ:

cgas(θ) = cgas,0 + cgas,1 · θ + cgas,2 · θ2 , (1)

which leads to three constant parameters per specific heat capacity. If such approximations are
used, the right hand side of the resulting ODE system is a third-order polynomial in θ because it
contains products of the type cgas · θ. The actual equation for the temperature of the stack θ(t) has
the general form

θ̇(t) = cinvm
(
cgases,AG(θ) ·

(
θinAG(t)− θ(t)

)
+ cgases,CG(θ) ·

(
θinCG(t)− θ(t)

)
+ f(θ(t))

)
, (2)

explained in more detail, for example, in (Rauh et al., 2013). Here, f(θ) contains components
related to Ohmic losses and the heat flows between the stack and environment and of the overall
chemical reaction, which are at most quadratic in temperature in case the reaction enthalpies are
modeled similarly to (1). The symbols θinAG and θinCG denote the temperatures of anode and cathode
gases, respectively (parameters which can be measured and recorded by SOFC test rig sensors).
The constant cinvm is explained in Table I, and cgases,AG(θ), cgases,CG(θ) are the heat capacities of
gases at the anode and cathode, respectively, modeled as in Eq. (1) for each of the involved gases.
We studied this kind of model in (Auer et al., 2012; Kiel at al., 2013; Auer et al., 2014). In this
paper, we simplify (2) as explained in Section 3 and study the resulting models. The rest of this
section contains theory which can be applied generally to all temperature models of the type (2),
simplified or not.

2.2. Parameter Identification for the SOFC Temperature

We obtain values for the parameters of the SOFC temperature model using the least squares
minimization. If the goal is to verify the obtained optimum, the interval technique of global
optimization (Hansen and Walster, 2004) can be employed. A common principle is to minimize
the objective function J (or its worst-case value under uncertainty – its upper bound J in the
interval case) with respect to parameters p:

J =

Te∑
k=Tb

N∑
i=1

(yi(tk, p)− ym,i(tk))2 . (3)

Here, y(tk, p) is the solution to the model equations (e.g., as given in Eqs. (8)–(12)) at the time tk,
k = Tb, . . . , Te. The notation ym,i(tk), i = 1 . . . N , signifies the measured values for the temperature.
Without loss of generality, we assume that the N states that can be measured using the sensors of
the SOFC test rig are the first N ones in the vector y(tk, p). In our context, tk = Tb, Tb + 1, . . . , Te.
That is, J quantifies deviations between the simulated results and the measured output vector
acquired with T = Te − Tb samples and a constant sampling time h = 1s.

The solution y(t, p) is obtained from the corresponding IVP and optimised with respect to the
measured values. Depending on the number of finite volume elements that are used to discretize
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the differential equations for the stack temperature, the resulting ODE system for this quantity has
different number of equations. Until now, we considered one, three, and nine volume elements. If
the preheater models consisting of M equations are used additionally (cf. e.g. Eqs. (8)–(11)), this
results in systems of 1+M , 3+M , and 9+M equations, cf. (Rauh et al., 2013). Finer discretisations
are possible in principle but are expensive computationally and rather unstable numerically. An
empirically motivated additional condition is induced by the accuracy of the measurements:

yi(tk, p) ⊆ [ym,i(tk)−Ki, ym,i(tk) +Ki] =: [∆ym(tk)] for tk = Tb, . . . , Te, i = 1 . . . N , (4)

with constants Ki chosen in accordance with the actual SOFC test rig. A traditional measure for
comparing the quality of the identified parameter sets (because there could be many possibilities)
is the root mean square error e given by

e =

√√√√√ Te∑
k=Tb

(yi(tk)− ym,i(tk))2

Te − Tb
(5)

for each solution component with the index i ∈ {1 . . . N} of y(t) we are interested in.
In the most of our recent publications (e.g., (Auer et al., 2012; Kiel at al., 2013)), we solved the

global optimisation problem (3) by verified approximation: The true solution y(t, p) of the IVP was
approximated by the explicit Euler method as

[y(k)] := [y(k−1)] + h · f([y(k−1)], [p]) , (6)

where f denotes the right side of the IVP (componentwise). The approximation [y(k)] at tk was
substituted for the exact solution y(tk) in the objective function (Eq. (3)) with the sampling time
of h = 1s and the discretisation error ignored. Although we could not verify the whole process by
applying interval optimisation procedures in this case, the approximated cost function

Japp =

Te∑
k=Tb+1

N∑
i=1

(
y

(k−1)
i − ym,i(tk) + h · f(y

(k−1)
i , p)

)2
, (7)

where y(Tb) is the initial condition, was evaluated in a verified way and optimised using an interval
algorithm available in UniVerMeC. Note that the first (and second) derivatives of Japp were
computed exactly with the help of algorithmic differentiation. Although the control-oriented SOFC
models are less complex than those based on, for example, partial differential equations, they
are still complex enough so that their treatment with general-purpose verified global optimisation
software is next to impossible. In particular, the summation in Eq. (3) is carried out for T = 16628
measurements which causes numerical problems even in the usual floating point based case. High
times T are explained by the already mentioned general goal to produce models valid for a wide
range of operating conditions.
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2.3. Anaylsis of the Model Types; Sensitivity

From the point of view of verification and validation analysis, the optimization problem described
above might take different forms which are verified to different extents. Generally, we can differen-
tiate between four verification categories (Auer and Luther, 2009) summarized from the lowest to
the highest verification extent as follows.

(C4) The implementation of the mathematical model is based on fixed point arithmetic or non-
standard floating point arithmetic.

(C3) The implementation of the mathematical model uses standardized IEEE floating point arith-
metic.

(C2) The implementation of the mathematical model uses verified techniques for several subtasks.

(C1) The implementation of the mathematical model uses verified techniques everywhere.

In the case of SOFC parameter identification, there are two general classification characteristics.
The first one (F1) is the way the simulated solution y(tk, p) of the IVP is obtained in (3). The second
characteristic (F2) is the kind of techniques the implementation relies on (essentially, verified or
usual floating-point). Overall, we can discern the following model types:

(F1) How is y(tk, p) obtained in (3)?

(F1.a) y(tk, p) is computed analytically (a closed-form solution)

(F1.b) y(tk, p) is approximated by an analytic expression (e.g., using the Euler or Heun method)
and the approximation error is neglected, cf. Eq. (7)

(F1.c) y(tk, p) is computed using a “black box” numerical solver (no explicit expression for the
solution)

(F2) What is the underlying technique for the implementation?

(F2.a) Traditional floating point methods

(F2.b) Interval analysis (with result verification; possibility to propagate bounded uncertainty
through the system)

(F2.c) Other techniques with result verification (e.g., affine arithmetic, Taylor models, etc.)

Note that forms F1.a and F1.c combined with F2.b or F2.c correspond to the complete verification
of the model (C1), if optimisation is carried out in a completely verified way. If it is not possible to
verify the optimum and a certain best suitable interval vector is chosen from the list of candidates
produced by global optimisation according to a heuristic technique, then the corresponding degree
is C2. In (Auer et al., 2012; Kiel at al., 2013), we were able to achieve the verification degree of
C2 for SOFC temperature models of dimensions one and three (without considering preheaters) by
using the variant F1.b&F2.b.
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There are two more important notions in the context of verification and validation analysis:
uncertainty quantification and sensitivity analysis. The task of the former is to quantify the un-
certainty in the the model output from the uncertainty in the input (forward propagation) or vice
versa (inverse). Generally, it is easier to solve the first problem than the second, so that there are a
variety of probabilistic (e.g. Monte-Carlo) or non-probabilistic methods (interval or fuzzy analysis)
developed for this purpose. The task of sensitivity analysis is to apportion the uncertainty in the
model output to different sources of uncertainty in the model input (Saltelli et al., 2008). Here, a
good indicator is considered to be the first derivative of the output with respect to the input we
are interested in. The already mentioned framework UniVerMeC allows us to solve both tasks for
different kinds of thermal models for SOFCs.

3. Possibile Simplifications

In a realistic situation, engineers often need a trade-off between a high degree of system reliability
(or verification) and an acceptable computing time (or overall costs). That is, the models might need
simplification if high verification degrees are requested in a real-time simulation or control. In this
section, two obvious possibilities to simplify SOFC temperature models are described. Additionally,
we provide closed form solutions to the suggested models. Note that using the computer algebra
system MATLAB did not work very well for obtaining closed-form expressions (which had to be
derived “by hand”). Although it was possible to compute them in MATLAB in some cases, the
expressions were numerically unstable, leading to overflows with increasing times t.

3.1. Common Settings

We make several simplifying assumptions, some of which are used only for the purpose of clearer
presentation and are not mandatory:

(S1) We consider the nitrogen as the only anode gas for the heating phase without any chemical
reactions of gases (not mandatory)

(S2) We work with a single volume element to describe the temperature of the stack as a whole
(mandatory for obtaining a closed form solution, at least under assumption S3.b)

(S3) We consider different approximations to the heat capacities c(θ) of the nitrogen (the anode gas)
and the cathode gas (mandatory)

(S3.a) cgas(θ) := cgas,0 is constant (corresponds to the model we denote by MPC1 in this paper)

(S3.b) cgas(θ) := cgas,0 + cgas,1 · θ is linear (corresponds to the model MPL1)

In several cases, we take two preheaters into consideration since it improves the overall quality of
SOFC models from the point of view of their control. It is possible include more preheaters into
the overall model or do not consider them al all.

The parameters, variables, and control states still present in MPC1 and MPL1 are given by
Table I. Those denoted by ṁ describe mass flows of, for example, nitrogen. All control variables from
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Table I are assumed to be piecewise constant. That is, we use the information from measurements
to describe these values instead of modeling them by appropriate initial value problems (IVPs).
These measurements are recorded each second (i.e., with the stepsize h = 1s) between Tb = 362 and
Te = 17000 (the heating stage of the experiment). In the same way, it is possible to use sensor data
for the preheater output instead of the IVPs (8)–(11). All parameters are considered to be constant;
their actual values are to be identified by an appropriate optimization procedure (cf. Section 2).
For all variables, the corresponding initial values at the beginning of integration Tb are supposed
to be known.

Because the control variables are piecewise constant, the model IVPs are solved separately in each
time interval [tn−1, tn], tn− tn−1 = 1, n = Tb+1, . . . , Te, since the stepsize for taking measurements
is h = 1s. The initial values in the next step are the results from the previous step so that t0 = tn−1

for the time step tn. If the possibility F2.b is used, we have to work with the interval hull of the
values of the control variables, because we do not know the exact value inside (tn−1, tn), only in
tn−1 and tn.

3.2. Simplified Model MPC1: Constant Heat Capacities

The system of ODEs resulting from the assumptions S1, S2, S3.a is as follows (as a comparison,
the general form under S2 is given in (Auer et al., 2012)):

ẏ0 = T invAG · (u1 − y0) (8)

ẏ1 = T invSL,AG · (y0 − y1) (9)

ẏ2 = T invCG · (u2 − y2) (10)

ẏ3 = T invSL,CG · (y2 − y3) (11)

θ̇ = −cinvm · (kconst − (cCG,0 · y3 + cN2,0 · y1) + klinθ) , (12)

where ka, kconst and klin are defined according to

ka = 234000αi + 448500αj + 345000αk ,

kconst = −θAka ,

klin = ka + ṁin
CG · cCG,0 + ṁin

N2
· cN2,0 ,

and initial conditions yi(Tb) = yici , i = 0, 1, 2, 3, θ(Tb) = θic. The obtained ODE system is linear in
temperature (including the preheater states). The equations (8)–(9) describe the first preheater (for
the nitrogen), Eqs. (10)–(11) the second (for the cathode gas), and Eq. (12) the stack temperature.
We can derive the simple closed form solution to the model:

y0(t) = u1 − (u1 − yic0 )e−T
inv
AG (t−t0) (13)

y1(t) = u1 −
T invSL,AG

T invSL,AG − T invAG

(u1 − yic0 )e−T
inv
AG (t−t0) + kN2e

−T inv
SL,AG(t−t0) (14)

for the anode gas preheater, where kN2 = yic1 −u1+
T inv
SL,AG

T inv
SL,AG−T

inv
AG

(u1−yic0 ). The solution for the cathode

gas preheater has the same form; only the parameters are different. (All labels “N2” (or AG) in

REC 2016 - E. Auer and S. Kiel

306



Uses of Methods with Result Verification for Simplified Control-Oriented SOFC Models

Table I. Model parameters, control and state variables.

Parameters (to identify)

αi, αj , αk coefficients of heat convection

cN2,0, cN2,1 heat capacity of nitrogen as cN2(θ) = cN2,0(+cN2,1 · θ)
cCG,0, cCG,1 heat capacity of the cathode gas as cCG(θ) = cCG,0(+cCG,1 · θ)

T inv
AG inverse time constant of the anode gas preheater

T inv
CG inverse time constant of the cathode gas preheater

T inv
SL,AG inverse time constant of the anode gas supply line

T inv
SL,CG inverse time constant of the cathode gas supply line

c specific heat capacity of the stack module

m mass of the stack module

cinv
m = 1/(c ·m)

Variables

y0 = vN2 ṁin
N2

· θN2 at the preheater outlet, y0(Tb) =: yic0

y1 = vinN2
ṁin

N2
· θinN2

at the stack inlet, y1(Tb) =: yic1

y2 = vCG ṁin
CG · θCG at the preheater outlet, y2(Tb) =: yic2

y3 = vinCG ṁin
CG · θinCG at the stack inlet, y3(Tb) =: yic3

θ temperature of the stack, θ(Tb) =: θic = 293.9K

Control variables

ṁin
N2

mass flow of anode gas (recorded data)

ṁin
CG mass flow of cathode gas (recorded data)

θA ambient temperature

θdAG desired temperature of the anode gas (recorded data)

θdCG desired temperature of the cathode gas (recorded data)

u1 = vdN2
desired vN2 = θdAG · ṁin

N2

u2 = vdCG desired vCG = θdCG · ṁin
CG

Eqs. (13)–(14) should be changed to “CG”.) If T invSL,AG = T invAG , we obtain trivial solutions y0(t) = yic0 ,

y1 = yic1 .
The solution for the temperature can be obtained after substituting into (12) the corresponding

expressions for y3(t) and y1(t). Using variable separation and variation of the constant delivers the
general solution form as

θ(t) = IN2(t) + ICG(t) + kθe
−cinv

m ·klin(t−t0) − kconst
klin

, (15)
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where

IN2(t) :=
u1 · cN2,0

klin
+ cinvm · cN2,0 ·

(
−

T invSL,AG

(T invSL,AG − T invAG )(cinvm klin − T invAG )
(u1 − yic0 )e−T

inv
AG (t−t0)

+
kN2

cinvm klin − T invSL,AG

e−T
inv
SL,AG(t−t0)

)
,

ICG(t) analogously, and kθ = θic−ICG(t0)−IN2(t0) + kconst
klin

. If T invSL,AG = T invAG and T invSL,CG = T invCG ,
that is, if we have trivial solutions for the preheaters, the corresponding solution for the temperature
is also trivial:

θ(t) = − k̃const
klin

+

(
θic +

k̃const
klin

)
· e−cinv

m ·klin·(t−t0) , (16)

where k̃const = −θA · ka − (cCG,0 · yic3 + cN2,0 · yic1 ). This version of the solution is also useful if we
assume that the preheaters are piecewise constant in time and employ the recorded sensor data
instead of the dynamic model given by Eqs. (8)–(11).

In principle, we can use the same approach to obtain closed-form solutions for temperature mod-
els of higher dimensions with constant heat capacities. If the preheaters are assumed to be constant,
the resulting linear system has only constant coefficients so that well-known techniques from the
calculus can be employed. However, the expressions become very complicated. The numerical results
from, for example, (Auer at al., 2015), suggest that there is almost no gain in using them even in
the one dimensional case MPC1 from the point of view of the computing time for identification.
One of their advantages is higher accuracy: better model parameter sets can be identified with
their help. In (Auer at al., 2015a), we were able to identify the parameter set shown in Table II
for the main parameters of interest of MPC1 with the root mean square measure e = 3.5259K.
As a comparison, the best parameter set obtained for the non-simplified model of dimension one
so far has the measure e = 2.1641K. Another advantage of MCP1 is the reduced computing time
for pure simulation with known parameter sets. Our general conclusion about the model MPC1 is
that it can be used efficiently in the context of an online simulation or control over relatively short
time intervals. In Section 4, we will further explore the properties of this model by studying its
sensitivity to parameters and its ability to account for parameter uncertainty.

Table II. The best obtained parameter sets for MPC1 and MPL1.

Model c αi = αj = αk cN2,0 cN2,1 cCG,0 cCG,1 e

MPC1(F1.a&F2.a) 4.53503 · 106 1.49548 · 10−3 1.96452 · 106 – 1.52826 · 107 – 3.5K

MPL1(F1.b&F2.a) 3.38579 · 104 3.60235 · 10−5 5.52725 · 106 −11221.8 −8.88817 · 104 483.868 0.5K
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3.3. Simplified Model MPL1: Linear Heat Capacities

The simplified model MPL1 relies on linear polynomial approximations for the heat capacities.
Assuming that the preheater states are not constant inside the time interval (of width 1s) where
other control variables are constant, we obtain a Riccati equation for the temperature which does
not seem to have an analytical solution. For piecewise constant preheater states, we can derive a
closed-form expression similarly to (Auer et al., 2014) as shown in the following.

If the preheater states are not constant, Eqs. (8)–(11) stay the same as for MPC1 from the
previous section. The equation for the temperature θ turns into

θ̇ = −cinvm · (kconst(t) + klin(t)θ + ksqθ
2) (17)

where kconst(t), klin(t) depend on time and θ2 appears on the right side of the equation with the
constant coefficient ksq:

kconst(t) = −θAka − (y3(t)cCG,0 + y1(t)cN2,0) (ka as in Section 3.2) ,

klin(t) = k+ṁ
in
CG · cCG,0 + ṁin

N2
· cN2,0 − (y3(t)cCG,1 + y1(t)cN2,1) ,

ksq = ṁin
CG · cCG,1 + ṁin

N2
· cN2,1 .

Now we have two additional parameters cCG,1, cN2,1 as compared to MPC1, resulting from the fact
that we represent heat capacities of gases as cN2(θ) = cN2,0 + cN2,1 · θ, cCG(θ) = cCG,0 + cCG,1 · θ.
Equation (17) is a Riccati equation. Since ksq does not depend on time in our case, it can be
transformed into a system of the following linear ODEs with non-constant coefficients:(

y4

y5

)′
=

(
0 1

−(cinvm )2kconst(t)ksq −cinvm klin(t)

)
·
(
y4

y5

)
, (18)

where the temperature θ equals
y5

cinvm ksqy4
. The matrix in Eq. (18) does not necessarily commute

with itself for given points of time t, s so that finding a closed-form expression in this case seems
impossible. Therefore, we assume now that the preheaters behave as constant functions inside
intervals of width 1s (piecewise constant on the whole) similarly to control variables. The values
of y1 and y3 can be measured with the sampling frequency of 1s between Tb and Te. The closed-
form solution for the temperature equation with – now constant – coefficients kconst, klin and
y1(t) = ymeas1 , y3(t) = ymeas3 has different branches in dependence on D = k2

lin − 4 · kconst · ksq:

D > 0 : θ(t) =
1

ksq


√
D

1− e−cinv
m (t−t0)

√
D ·

(
1− 2

√
D

2ksqθic + klin +
√
D

) − klin +
√
D

2

 ,

D < 0 : θ(t) =

√
−D tan (−

√
−D
2 cinvm (t− t0) + θc)− klin

2ksq
, θc = atan

(
2ksqθ

ic + klin√
−D

)
, (19)

D = 0 : θ(t) =
2θic + klin/ksq

2 + cinvm (t− t0)(2ksqθic + klin)
− klin

2ksq
.
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From the definitions for kconst, klin, ksq and the data, it is likely (but not certain) that D is positive.
For the set of parameters obtained in MATLAB (F1.b&F2.a), we checked that to be so. However,
the measure e for this parameter set and MPL1 is not satisfactory. If we take this set as starting
values in UniVerMeC and use the model variant F1.b&F2.a, we obtain a much better parameter
set (cf. Table II). Note that the measure e for this set is even better than that achieved by using
the non-simplified model (Auer at al., 2015a). A drawback is that there is a branch change for the
solution θ(t) in this case (from D > 0 to D < 0). However, this fact does not make any difference
for the pure simulation. The difficulties would occur during stages in the verification and validation
process requiring derivatives of θ (e.g. sensitivity analysis, uncertainty quantification with Taylor
models). More information about that is in the next section. Our general conclusion is that MPL1
is a very promising simplification (both as F1.a and F1.b), which is able to handle a wide range
of operating conditions in the same way as the non-simplified model. Moreover, it is faster and
possesses a closed-form solution.

4. Uncertainty Quantification and Sensitivity Analysis for MPC1 and MPL1

In this section, we analyse the performance of the proposed simplified models MPC1 and MPL1
with respect to their ability to take into account uncertainty in model parameters during the
simulation stage. That is, we assume that the parameters of the both models have already been
identified as reported in (Auer at al., 2015a). We rely on the parameter values given by Table II
which we obtained by using the interior point optimizer IPOPT (Wächter and Biegler, 1991) inside
the framework UniVerMeC (Kiel, 2014). In this sense, the results of the parameter identification
stage for these SOFC temperature models are not verified and have verification degree of C3 (cf.
Section 2.3).

One possibility to quantify the uncertainty during the simulation stage is to use methods with
result verification. This has an additional advantage: the produced simulation data are proven to
be correct wrt. the considered mathematical model (i.e., do not contain any numerical errors). If
there is no uncertainty in parameters, the simulation results – now nonetheless (tight) intervals
containing the true solution – can be intersected with the sets given by Condition (4). If they stay
inside the bounds of (4), the parameters obtained in the non-verified way mentioned above are
validated. Both of the sets from Table II are valid in this sense.

To actually quantify the uncertainty, we consider variants F1.a and F1.b for MPC1 and MPL1
and three kinds of arithmetics with result verification (F2.b-F2.c). These are the interval arith-
metic as implemented by C-XSC (Hofschuster et al., 2008), affine arithmetic implemented by
Yalaa (Kiel, 2014), and Taylor model arithmetic from RiOT (Eble, 2007). The term “arithmetic”
means that we need only basic operations such as addition along with several elementary functions
such as the exponential (ex). However, the combination F1.b&F2.b requires a verified solver for ini-
tial value problems, for which purpose we employ VNODE-LP (Nedialkov, 2002). At the moment,
there are no other verified IVP solvers available in UniVerMeC where we implement the models
and conduct computations during all stages of modeling and simulation cycle for SOFC temper-
ature. That is, the combination F1.b&F2.c is possible in principle but not currently implemented
inside UniVerMeC.
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We have not mentioned variant F1.c so far, the reason being that it was found to be too
slow (Pusch, 2013; Auer et al., 2014) even in its non-verified form F2.a. Additionally, it is not
interesting from the point of view of the simulation stage since it is the same as for F1.b. The real
advantage concerns the stage of parameter identification which is not in our focus in this paper.

The question of MPC1 and MPL1 sensitivity to parameters is also an interesting one. The
answer allows us not only to apportion the output uncertainty to different inputs, but also to choose
variables with dependency tracking (e.g., in affine or Taylor model arithmetic) efficiently. Therefore,
this section is structured as follows. First, we outline the principles of the framework UniVerMeC
in short. After that, we carry out sensitivity analysis for MPC1 and MPC2 using floating point
arithmetic and algorithmic (“exact”) differentiation as implemented in FADBAD++ (Stauning,
1997). Finally, we consider uncertainty in heat capacities of gases and propagate it through the
system, which allows us to assess the usefulness of the considered models for that purpose.

4.1. UniVerMeC — An Interoperable Framework

Although originally developed for distance computations, the framework UniVerMeC works very
well for the stages of parameter identification and simulation during the modeling and simulation
cycle for SOFC temperature. Its major advantage consists in decoupling a computerized model from
the arithmetic it works with. Usually, users have to decide which arithmetic their implementations
are based on. The default choice is the floating-point arithmetic, although it has a number of
disadvantages (for example, we cannot guarantee that the computed result is actually correct).
Through its layered structure and, in particular, its adapter concept, UniVerMEC allows us to
implement a mathematical model largely without the need to think about the kind of arithmetic we
want to use. This helps to choose arithmetics according to the actual goal (e.g., offline verification
as opposed to fast online simulation/control) and even combine verified and non-verified techniques
in a meaningful way (e.g., floating-point parameter identification followed by interval simulation).
Currently, UniVerMeC does not implement any stochastic methods or arithmetics. However, it
can be extended in this way, which would provide even more possibilities for interoperable work.

UniVerMeC’s layered structure is relaxed, that is, a layer can be skipped. The bottom layer
core provides access to floating point, interval, and affine arithmetic as well as to Taylor models,
which share a common interface but rely an different adapters. The next layer, function, allows us
to represent scalar and vector-valued functions uniformly if their mathematical sense is supplied
according to the formalization from (Kiel, 2014). This concept helps to evaluate a function with all
arithmetics supported at the core layer. We introduce abstractions for derivatives, slopes, Taylor
coefficients or contractors at this level, a list which advanced users can extend if necessary. The third
layer is responsible for defining models in the framework, for example, the IVPs given in Section 3.
It merges the relevant abstractions provided at the previous two layers into one entity. Specialized
data structures for higher-level algorithms are at the fourth level, for example, those for special
types of search space decomposition used in optimisation. Actual algorithms are implemented at
the topmost level. UniVerMeC offers its own global optimisation algorithm GlobOpt based on
that described in (Hansen and Walster, 2004). Additionally, external software such as IVP solvers
or further optimisers can be interfaced at this level. For example, we interface the interior-point
tool IPOPT for non-verified optimisation.
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4.2. Sensitivity Analysis

Since UniVerMeC already implements the possibility to obtain derivatives for the models, it is easy
to study different forms of MPC1 and MPL1 from this point of view. We chose to rely on floating
point arithmetic in this case although we could have also used intervals or affine forms. The reason
is that a number characterising the first derivative of the temperature θ(t) or the objective function
J wrt. a certain parameter p gives us enough information to apportion uncertainty appropriately.

First, we consider the SOFC temperature θ(t) as modeled by MPL1 (cf. Eqs. (17) and (19)) in

some detail. Since our simplifications concerned the heat capacities, we compute
∂θ(tk)

∂cN2,0
,
∂θ(tk)

∂cN2,1
,

∂θ(tk)

∂cCG,0
, and

∂θ(tk)

∂cCG,1
for each point of time tk ∈ {Tb, Tb + 1, . . . , Te}. In Figure 1, the results are

shown for F1.a (that is, Eq. (19)) on the left and F1.b (that is, Formula (6) in floating point with
f defined by the right side of Eq. (17)) on the right. The Figure demonstrates that, out of the four
mentioned parameters, both model variants are most sensitive to cCG,1. On the whole, variant F1.b
is much less sensitive to changes in parameters.
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Figure 1. Sensitivity of the modeled SOFC temperature to the heat capacity of nitrogen and cathode gas for the
model MPL1: exact solution on the left (F1.a), the Euler approximation on the right (F1.b).

Out of all possible parameters, MPL1 is most sensitive to αi (equal to αj and αk in our setting).

Instead of computing
∂θ(tk)

∂p
for all relevant points of time, we now consider

∂J

∂p
because, according

to Formula 3, it essentially summarizes such plots as in Figure 1 in one number. The results for both
MPL1 and MPC1 (as F1.a and F1.b) are given in Table III. Aside from demonstrating extreme
sensitivity to αi an all cases (which was also witnessed in experiment), it lets us observe that
both variants of MPC1 are almost equally sensitive to changes in parameters, whereas there is a
big difference for the variants of MPL1. The variant MPL1 as F1.b is the least sensitive one and,
therefore, can be efficiently employed for parameter identification, the claim supported by the fact
that the best parameter set so far was computed using this option. In Figure 2, we can see that
MPL1 describes the measured data in the best way (both as F1.a and F1.b).
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Table III. Sensitivities of the objective function J (cf. Eq. (3)) for the models MPC1 and MPL1 under F2.a.

J
∣∣∣∂J
∂c

∣∣∣ ∣∣∣ ∂J
∂αi

∣∣∣ ∣∣∣ ∂J

∂cN2,0

∣∣∣ ∣∣∣ ∂J

∂cN2,1

∣∣∣ ∣∣∣ ∂J

∂cCG,0

∣∣∣ ∣∣∣ ∂J

∂cCG,1

∣∣∣
F1.a, MPL1 2.93594 · 101 3.8117 · 1010 4.9631 · 10−2 2.63897 · 101 1.46662 1.26157 · 102

F1.b, MPL1 4.76907 · 10−3 6.87924 · 105 5.36099 · 10−5 2.20879 · 10−2 1.3089 · 10−3 5.25226 · 10−1

F1.a, MPC1 3.09309 · 10−1 2.44704 · 108 8.48586 · 10−2 – 1.36277 · 10−1 –

F1.b, MPC1 3.09307 · 10−1 2.44754 · 108 8.48573 · 10−2 – 1.36288 · 10−1 –
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Figure 2. SOFC temperature modeled by MPL1 and MPC1 using F2.a in comparison to the measured data.

4.3. Uncertainty Quantification

We consider uncertainty of different magnitudes in parameters cN2,0 and cCG,0 and try to propagate
it through the models MPL1 and MPC1 (both as F1.a) using interval, affine, and Taylor model
arithmetics. The variant F1.b as a pure approximation by Formula (6) is not feasible in this context
because the deviation from the true solution would be too large. That is, to be accurate, we
need to solve the corresponding simplified system (Eqs. (8)–(12) or Eq. (17)) numerically in this
case. For comparison, we do this under uncertainty using the interval IVP solver VNODE-LP.
Additionally, we measure the wall times needed for each relevant simulation. Our goal is to establish
an uncertainty level in these parameters which would allow us enclose the measured data in a
meaningful way, that is, not entirely because of overestimation effects.

The MPL1 solution from Eq. (19) takes preheaters into account only as measurements, whereas
the exact solution in Eqs. (13),(14),(16) explicitly describes them. Besides, the solution in Eq. (19)
has three different branches. To be able to enclose all possible states, it is necessary to compute
the convex hull of enclosures of all three branches each time when the upper bound of D is not
strictly less than zero or the lower bound of D is not strictly larger than zero. This fact makes
MPL1 as F1.a more prone to overestimation than other variants, which is reflected in Figure 3,
left. Only the uncertainty of ±10−5% of the nominal parameter values of cN2,0 and cCG,0 (cf.
Table II) can be considered in interval arithmetic meaningfully, for both variants F.a and F.b (the
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Table IV. Computing times for temperature simulations with exact solutions to models MPC1
and MPL1 under uncertainty ±U% in cN2,0 and cCG,0 using interval, affine, and Taylor model
arithmetics. The last column shows times for the corresponding variant without the exact solution,
obtained using interval-based solver VNODE-LP.

Intervals Affine forms Taylor models VNODE-LP

MPC1 0.34 s (U = 10−4) 112.09 s (U = 1) 207 s (U = 10) > 1 day (U = 10−4)

MPL1 0.12 s (U = 10−5) 23.34 s (U = 50−5) 120.5* s (U = 10−3) 228.42 s (U = 10−5)

latter with VNODE-LP). Note that the nominal values for these parameters are of orders 106, 104

for the considered parameter set. The uncertainty of ±10−4% leads to too large overestimation
in the output θ(t), so that these enclosures are not useful. Affine forms (with a restart each 5
steps so that the dependencies are lost and the overall simulation is faster) can handle a slightly
larger uncertainty of ±50−5%. Taylor models perform better with respect to uncertainty (±10−3%)
but have a different problem with the solution as in Eq. (19). The library RiOT we employ for
Taylor model computations does not implement the elementary function atan, so that the branch
containing it cannot be used and we have to stop computations.
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Figure 3. Upper and lower bounds of the temperature with uncertainty in cN2,0 and cCG,0: MPL1 on the left and
MPC1 on the right.

The model MPC1 behaves better with respect to uncertainty propagation (cf. Figure 3, right).
Although interval arithmetic cannot handle more uncertainty than ±10−4% in a meaningful way,
affine forms propagate ±1% and ±10%, respectively, despite large nominal values of cN2,0, cCG,0 for
the considered parameter set. The general form of the trajectory is preserved, and the measurement
data are enclosed.

In Table IV, the computing times are shown. As a benchmark, we recorded the time necessary for
10 runs of each variant. The table gives the corresponding wall times divided by 10. Not surprisingly,
the variant F1.b for both models is slow, extremely so for MPC1 (cf. the last column of the Table).
Note that the speed in this case depends on the parameter set, since VNODE-LP implements
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a dynamic stepsize control. That is, the simulation can be faster for a different parameter set;
however, since the set from Table II had the closest fit for MPC1, we decided not to change it.
The simulation reached tk = 1761 s before we terminated it. As opposed to it, VNODE-LP could
handle the variant F1.b for MPL1 in an acceptable time. However, the variant F1.a is still faster
(especially for MPL1 because it does not have to handle the preheaters explicitly). Besides, we are
able to use affine forms and Taylor models here, which achieve acceptable computing times. Note
that the time for MPL1 with Taylor models is provided only as a reference for a different parameter
set for which it does not become necessary to change the solution branch (so that we do not have
to compute atan and the simulation is not terminated).

5. Conclusions

In this paper, we analysed two simplified versions of the one dimensional SOFC temperature model
from the point of view of their performance during the simulation stage of the modeling and
simulation process. The simplification concerned the heat capacities of gases, which were assumed
to be constant (MPC1) or linear (MPL1) in temperature, respectively, as opposed to the normal
version of the model operating with polynomials of order two. For MPC1 and MPL1, we were able to
provide closed form expressions for the solutions (F1.a). Additionally, we analysed the performance
of MPC1 and MPL1 when the obtained IVPs were solved numerically (F1.b). Having identified
good parameter sets for both models, we performed a sensitivity analysis, which confirmed the
experimentally observed fact that both models were very sensitive to changes in coefficients of
heat convection. Since the simplifications concerned the heat capacities of the anode and cathode
gases, we considered bounded uncertainties in them and propagated them through the system using
interval, affine, and Taylor model based methods, which, in addition to the mentioned uncertainty
quantification, allowed us to rule out the possibility of numerical errors during simulation.

The models MPC1 and MPL1 are now analysed almost completely from the point of view of
simulation. The MPL1 is able to describe the measured data for wide ranges of operating conditions
in the best way if no uncertainty in parameters is considered. The variant relying on the closed form
expression is the fastest in all considered arithmetics, but less suitable for uncertainty propagation
than the corresponding MPC1 one. Using the latter, we are able to process uncertainty of up to
the order ±10% of the (large) nominal values of parameters under Taylor model arithmetic without
much overestimation, whereas the former one is good for uncertainties up to ±10−3%. The problem
is that the solution to MPL1 has different branches, which might lead to a large overestimation in
“undecided” situations where a convex hull of all possibilities needs to be considered to ensure a
verified result. Note that the nominal values are of orders up to 107 in the parameter sets with the
smallest root mean square measures. The numerical variants of both models are actually too slow
to propagate the uncertainty in real time simulations, especially for MPC1. However, they are less
sensitive to changes in parameters, which makes them attractive at the (offline) identification stage
of the process. An overall conclusion is that MPC1 can be efficiently used over shorter time intervals
(especially with uncertainty, in which case it produces enclosures covering the data). MPL1 can
compete with the usual non-simplified model from the point of view of data fit over long time
intervals and is faster both as the closed-form and the numerical variant.
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In our future work, we plan to explore the possibilities to speed up the parameter identification
stage using the GPU. (Note that it would not be possible to employ the GPU for the classical
simulation stage in our context since it is sequential in its nature — we need initial values as
simulation results from the previous step to be able to proceed.) In (Auer et al., 2012; Auer et
al., 2014), we have already applied that idea to the verified parameter identification for the non-
simplified SOFC temperature model, achieving a significant speed-up. However, we were not able
to verify the optimum because of overestimation, and the obtained candidate parameter sets were
not very satisfactory with respect to the data fit. We hope that exact solutions to simplified models
will help to verify the optimum, so that an overall verification degree of C1 can be achieved (in an
acceptable time owing to the GPU). Moreover, it might be possible to employ the model variant F1.c
which was dismissed until now because of very high computing times. This goal cannot be reached
very easily for a technical reason: implementations of verified methods (e.g., interval analysis, etc.)
on the GPU are still very rudimentary in comparison to those available for the CPU.
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Abstract: Investigating the condition of a structural system requires an accurate estimate of the applied 
load and the current condition of the structure. As such, the presence of uncertainty becomes significant; 
because the variations inherent in design parameters will significantly affect the reliability of the structure. 
Therefore, it is crucial to appropriately quantify uncertainty in the design parameters as well as perform 
structural reliability analyses for determining the condition of the structure and its failure potential. This 
paper presents a new method for condition assessment of structures, which exhibit polymorphic uncertainty 
in their design parameters. An imprecise probability approach is used to quantify the polymorphic 
uncertainty. Applying this technique to conventional methods, the reliability analysis of a structure is 
improved. By incorporating imprecise probability values in the reliability analysis process, bounds for the 
probability of failure are estimated and established. These bounds are then used as a measure for the 
condition assessment of the structure. A numerical example is provided to demonstrate the applicability of 
the developed method. 
 
Keywords: structural dynamics, uncertainty, imprecise probability, p-box 
 
 
 

1. Introduction 
 
In structural engineering, the reliability and safety of a structure must be accurately assessed. Moreover, in 
order to achieve this reliability, the uncertainties present in both the structure and applied loads must be 
included in the analytical schemes. It is generally assumed in reliability analysis that all of the uncertainty is 
due to inherent stochasticity, known as aleatoric uncertainty, in the system and rather than due to modeling 
errors or faulty assumptions, known as epistemic uncertainty. This aleatoric uncertainty is accounted for 
using traditional theories of probability. Probabilistic methods require random variables to follow an 
assumed distribution, a requirement which often cannot be satisfied. One method of uncertainty modeling 
that avoids the shortcomings of traditional probabilistic modeling and other isomorphic uncertainty 
modeling methods is imprecise probability. Imprecise probability is a polymorphic uncertainty modeling 
method which involves setting possibilistic bounds on the cumulative distribution function describing 
uncertain parameters.  
 Numerous methods for reliability assessment of structural systems with uncertainty have been 
developed, the majority of which are based on traditional probability theories (isomorphic probabilistic 
approaches). Although theories of structural reliability are well-established, the practical application of the 
methods developed for reliability analysis is mathematically complicated. Moreover, the mathematical 
complexity increases dramatically as the number of structural components or modes of failure increases.   
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 As a result, practicing engineers often resort to gross simplifications to overcome the complexity 
inherent in the general formulation of structural reliability. This leads to reliability predictions that have a 
significant level of error. In this work, a new method for reliability analysis of a structure using an 
imprecise probability approach is developed. This method offers a new direction for incorporating 
uncertainties in the analysis and relies on defining the uncertain parameters using imprecise probability 
structures. Due to its polymorphic approach, this method offers a more realistic and comprehensive yet 
simpler process of treating uncertainties than traditional probabilistic-based reliability analyses. 

 
 
 

2. Review of Traditional Probabilistic Structural Reliability 
 
2.1. PERFORMANCE AND LIMIT-STATE ANALYSIS 
 
Traditional structural reliability analyses seek to estimate the probability that a structure will be unable to 
withstand the applied loading, known as the probability of failure. Considering a performance function, Z, 
with multiple independent variables representing the design parameters, 𝑋𝑖 (Ang and Tang, 2007):  
 

 ),,,( 21 nXXXgZ   (1) 

     

 Using the performance function Z, the probability of failure can be defined as: 
 

 𝑃𝐹 = 𝑃(𝑍 ≤ 𝑧𝑜) (2) 
   

in which 𝑧𝑜 is the performance limit defined as the minimum level of performance such that a structure is 
considered safe. Similarly, the probability of failure can be written as: 
  

 𝑃𝐹 = ∫ 𝑓𝑧(𝑧)𝑑𝑧
𝑧𝑜

−∞
 (3) 

  

in which 𝑓𝑧(𝑧) is the probability density function (PDF) of the performance function Z in the multivariate 
space.   

Many traditional reliability methods rely on the first order approximation, referred to as the First Order 
Reliability Method (FORM). This method yields sufficiently accurate results in cases where parameters 𝑋𝑖 
have small uncertainties. To enhance FORM, the Second Order Reliability Method (SORM) has also been 
developed. SORM also has limitations due to the increase in complexity of the analysis when the number of 
modes of failure increases or when there is a high level of correlation among parameters in the limit-state 
equation. 

 
2.2. FIRST ORDER RELIABILITY METHOD (FORM) 
 
In order to develop the general formulation for FORM, a first-order approximation on the performance 
function Z about the mean values, i , of each design parameter is performed as: 
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 Assuming the variables iX  are independent, the mean, , and standard deviation, ,  of Z are defined 
as: 

 )...,,,( 21 ng    (5) 
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in which   iii Xgc   . FORM works well when uncertainties are small (say < 0.3).   
 Many performance functions exist. For example, considering a structure under a random load, S, and a 
random resistance, R, the performance function and performance limit can be written as:  
 

 SRZ   (7) 
 

 𝑧𝑜 = 0 (8) 
  

Therefore, the probability of failure is: 
 

 𝑃𝐹 = 𝑃(𝑍 ≤ 0) = ∫ 𝑓𝑧(𝑧)𝑑𝑧
0

−∞
 (9) 

 

The mean and standard deviation of Z are  SRZ    and 22
SRZ   , respectively.  

 Assuming S and R to be random variables defined by normal probability density functions, the 
probability of failure is: 
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in which Φ is the standard normal cumulative distribution function. Substitution for 𝑧𝑜, the mean, and the 
standard deviation of Z yields: 

 



















22
SR

RS
Fp




 (11) 

 

in which the probability of failure for the structure is evaluated based on the probabilistic values of the load 
and resistance. 

When multiple modes of failure (m modes) are present, consideration of the two extreme cases of 
independence and perfect correlation among the modes allows for setting bounds on the probability of 
failure for the structure as:  
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in which the lower bound is the case of perfect correlation between failure modes and the upper bound is 
the case of independence among failure modes. In order to ascertain the reliability of the structure, the 
upper bound (independence case) can be used for the reliability level of the structure.  
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3. Methodology 
 
3.1. FORMULATION OF IMPRECISE PROBABILITY STRUCTURAL CONDITION ASSESSMENT  
 
The polymorphic approach for obtaining the probability of failure enables more reliable structural condition 
assessment due to the consideration of polymorphic uncertainties in both the applied loads and resistance of 
the structure. The general algorithm for Imprecise Probability Structural Condition Assessment (IPSCA) is 
given below.  
 
1. Determine the structure’s modes of failure (e.g. bending, shear, deflection). 

 

2. Determine the imprecise probability structure for the performance function for each failure mode. For 
each failure mode:  
 

a. Construct independent imprecise probability structures for the uncertain load and resistance. 
 

b. Perform random sampling on the CDF probability levels of uncertain load and resistance imprecise 
probability structures. For each realization r of the simulation: 
 

o Randomly select independent CDF values for load and resistance constructed imprecise 
probability structures and compute the corresponding interval load S̃ and interval resistance R̃ 
for the selected CDF values. 

o Determine and store interval bounds on the uncertain performance function. 
 

c. Repeat sufficiently large number of realizations to construct imprecise probability structure for 
uncertain performance function. 
 

3. Determine the interval probability of failure for each failure mode by computing the performance 
function at the performance limit for each bound of the corresponding imprecise probability structure. 
 

4. Determine the interval probability of failure of the structure using obtained intervals of probability of 
failure for each mode for two extreme cases of perfect correlation and independence among the modes 
as: 
 

    



m

j
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m
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21 )max(11)min(),...,min(),min(max  (13) 

 

5. Determine the maximum probability of failure as the upper bound of the interval probability of failure 
of the structure (independence case). 
 

 
 

4. Example 
 
In this section, an illustrative example is provided to demonstrate the applicability of the developed method 
in investigating the structural condition of a timber pedestrian bridge, shown in Figure 1. An increase in the 
bridge’s live load (pedestrians using the bridge) in recent months has raised a concern over its safety.   
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Figure 1. Schematics of a pedestrian bridge in the example. 
 
4.1. PROBLEM PARAMETERS 
  
The dominant modes of failure, as considered in this analysis, include bending, shear, and deflection modes 
of failure for the two beams. The input parameters are explained in detail in the authors’ pervious work 
(Mohammadi and Modares, 2013). Based on the results from the previous analysis, Table I summarizes the 
probabilistic values (using Gaussian distributions) of the mean,  , and standard deviation, , of the 
resistance and load for each failure mode.  
 
Table I. Probabilistic values for load and resistance for considered failure modes. 
 

Mode Resistance Load 

Bending 
Bending Capacity Applied Bending Stress 

b
R  (psi) 
6,990 

b
R  (psi) 

1,820 

b
S  (psi) 

1,730 

b
S  (psi) 
416 

Shear 
Shear Capacity Applied Shear Stress 

s
R  (psi) 
825 

s
R  (psi) 
214 

s
S  (psi) 
57.8 

s
S (psi) 
13.9 

Deflection 
Deflection Limit Induced Deflection 

d
R  (in) 
4.0 

d
R  (in) 
0 

d
S  (in) 
2.41 

d
S  (in) 
1.01 

 
4.2. TRADITIONAL PROBABILITY ANALYSIS 
  
The formulation for traditional probability analysis is used to compute the probability of failure for each 
failure mode (Eq. (11)). The results are summarized in Table II. 
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Table II. Probability of failure for each failure mode.

Mode Probability of Failure, Pf

Bending
Shear
Deflection

31040.2 
41073.1 
21077.5 

Considering the two extreme cases of perfect correlation and independence among the failure modes, 
the probability of failure for the structure can be bounded as (Eq. (12)): 

0602.00577.0  fP

In order to ascertain the reliability of the structure, the upper bound (independence case) can be used for 
the reliability level of the structure, 0602.0fP . It is worth noting that traditional probability analysis 
methods (including FORM) are not capable of considering uncertainties and variations in the mean or 
standard deviation of either load or resistance. The framework of imprecise probability structures allows for 
consideration of these uncertainties as depicted in the alternate solution of this example problem.  

4.3. IMPRECISE PROBABILITY STRUCTURAL CONDITION ASSESSMENT ANALYSIS

The example problem is reanalyzed considering resistance and load values defined by imprecise probability 
structures for both the bending and shear failure modes. As the resistance value given in Table I for the 
deflection mode of failure is a code limit, it is not a random value, and thus only a deterministic CDF was 
used to model its value. An imprecise probability structure was also used to model the load (induced 
deflection) for the deflection mode of failure. All imprecise probability structures were generated by 
considering a ±10% shift in the mean values defining each random variable. Figures 2-4 depict the 
imprecise probability structures for load and resistance of bending, shear, and deflection modes, 
respectively (except for the resistance for the deflection failure mode).  

Figure 2. Imprecise probability structures for the resistance and load in bending mode.  
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Figure 3. Imprecise probability structures for the resistance and load in shear mode. 

Figure 4. Imprecise probability structure for the induced deflection in the deflection mode. 

4.4. SOLUTION

The Imprecise Probability Structural Condition Assessment (IPSCA) methodology was utilized for 
computing interval bounds on the probability of failure for each failure mode. These interval probabilities 
of failure were then used to compute an interval bound on the probability of failure of the structure. One 
million Monte Carlo realizations are performed and the interval bounds on the probability of failure for 
each failure mode and for the structure are determined (Table III).   

Table III. Interval bounds on the probability of failure for each failure mode and for the structure. 

Bending Shear Deflection Structure

Lower 
Bound

Upper 
Bound

Lower 
Bound

Upper 
Bound

Lower 
Bound

Upper 
Bound

Lower 
Bound

Upper 
Bound

4.76E-04 9.36E-03 3.00E-05 6.98E-04 3.50E-02 9.12E-02 3.50E-02 1.00E-01
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4.5. OBSERVATIONS 
 
As shown in Table III, the probability of failure of the structure is dominated by the single failure mode 
with the greatest probability of failure. Moreover, the results determined using IPSCA contain the FORM 
results, verifying the developed method. 
 
 
 

5. Summary and Conclusions 
 
In this work, a new method for reliability analysis of a structure using an imprecise probability approach is 
developed. This method, entitled Imprecise Probability Structural Condition Assessment (IPSCA), offers a 
new direction for incorporating uncertainties in condition assessment of structural systems. As IPSCA does 
not place restrictive assumptions typical in traditional probabilistic structural condition assessment methods, 
it provides a more realistic and comprehensive yet simpler process of treating uncertainties than traditional 
probabilistic-based reliability analyses. This method allows for uncertainty in the load and resistance for 
each mode of failure using imprecise probability structures. An example problem illustrating the application 
of the developed method demonstrated the application and computational feasibility of IPSCA. The 
simplicity of the proposed method makes it attractive for introducing uncertainty defined by imprecise 
probability into structural condition assessment procedures. 
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Abstract: In many practical situations, we do not have full information about which alternatives
are possible and which are not. In such situations, an expert can estimate, for each alternative, the
degree to which this alternative is possible. Sometimes, experts can produce numerical estimates of
their degrees, but often, they can only provide us with qualitative estimates: they inform us which
degrees are higher, but do not provide us with numerical values for these degrees. After we get these
degrees from the experts, we often gain additional information, because of which some alternatives
which were previously considered possible are now excluded. To take this new information into
account, we need to appropriately update the corresponding possibility degrees. In this paper, we
prove that under several reasonable requirements on such an update procedure, there is only one
procedure that satisfies all these requirements – namely, the min-based conditioning.

Keywords: imprecise knowledge, possibility distribution, conditioning, knowledge update, invari-
ance

1. Formulation of the Problem

Need for ordinal-scale possibility degrees. It is often useful to describe, for each theoretically
possible alternative ω from the set of all theoretically possible alternatives Ω, to what extent this
alternative is, in the expert’s opinion, actually possible.

Often, the only information that we can extract from experts is the qualitative one: which
alternatives have a higher degree of possibility and which have lower degree. In some cases, we have
a linear order between possible degrees, so all we know is the order of different alternatives, from
the least possible to the most possible.

In principle, we could just use this order to process this information, but computers have been
designed to process numbers – and they are still much better in processing numbers. So, to speed
up processing of this data, degrees of possibility are usually described by numbers π(ω) from the
interval [0, 1]: the higher the degree of possibility of an alternative ω, the larger the value π(ω).

These numbers by themselves do not have an exact meaning, the only meaning is in the order. So,
in principle, the same meaning can be described if we apply any strictly increasing transformation
to the interval [0, 1].

c© 2016 by authors. Printed in Germany.
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Usually, some of this freedom is eliminated by the convention that the largest degree of possibility
is set to 1; we can always achieve this with an appropriate transformation. Such possibility degrees
are known as normalized. Thus, we arrive at the following definition (see, e.g., (Dubois et al.,
1994; Dubois et al., 1998; Dubois and Prade, 1998; Gutierrez et al., 2014)):

Definition 1. Let Ω be a finite Universe of discourse. A possibility distribution is a function
π : Ω→ [0, 1] for which

max
ω∈Ω

π(ω) = 1.

Need for conditioning and normalization. Often, after we have learned the possibility degrees
π(ω), we acquire an additional information, that some of the alternatives that we originally thought
to be possible are actually not possible.

For example, we had originally the set Ω of possible suspects, but it turned out that some of the
original suspects have alibis. As a result, the new list of suspects Ψ is smaller: Ψ ⊂ Ω.

Let us now assume that for each of the suspects ω we had a numerical degree of this possibility
π(ω) that this person committed the crime. Then, once we know that the list of suspects has
narrowed, how to we change these possibility degrees?

In general, if we had a possibility distribution on a set Ω of possible alternatives, and we now
learned that only alternatives from a subset Ψ ⊂ Ω are possible, how does this new information
change our possibility degrees?

Of course, now that we learn that only alternatives from the smaller set Ψ are possible, we
should set π′(ω) = 0 for all ω 6∈ Ψ. For all other alternatives σ ∈ Ψ, at first glance, it may sound
reasonable to just retain the original possibility degrees, i.e., to take π′(ω) = π(ω). However, we
have an additional requirement, that the largest possibility degree should always be 1, and the
above procedure does not always guarantee this requirement.

For example, if:

− we started with π(a) = 0.4, π(b) = 0.5, and π(c) = 1.0, and

− we learned that ω ∈ Ψ = {a, b},

then:

− if we simply take π′(a) = 0.4, π′(b) = 0.5, and π′(c) = 0,

− the largest of the resulting three degrees is not equal to 1.

It is therefore necessary to normalize the resulting degrees π′(ω), i.e., to transform them into new
degrees for which the largest is 1. This transformation – that we will call a conditioning operator –
should:

− take, as input, the original possibility distribution π, and

− generate the new probability distribution π′′ that we will denote by (π |Ψ).
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According to Definition 1, a possibility distribution π is a function that assigns, to every alternative
ω from the finite set Ω of possible alternatives, a value π(ω) from the interval [0, 1] – the value that
describe the degree to which, according to the available information, the alternative ω is possible.

A function from a finite set is nothing else but a tuple. Thus, if we denote the elements of the
finite set Ω by ω1, . . . , ωn, then a possibility distribution is simply a tuple consisting of n values
from the interval [0, 1]: π = (π(ω1), . . . , π(ωn)). In these terms, a conditioning operator is a mapping
that takes one such tuple π as an input and returns a new tuple π′′ = (π |Ψ) as the output.

To get π′′, one possibility is to divide all the values π′(ω) by the largest of these values. In the

above example, the largest value is 0.5, so we get π′′(a) =
0.4

0.5
= 0.8 and π′′(b) =

0.5

0.5
= 1.

Another possibility is to replace the largest of the values π′(ω) by 1 and leave all other values
unchanged. For the above example, this would mean that we take π′′(a) = 0.4 and π′′(b) = 1.

Let us describe a general definition of the corresponding operator.

Definition 2. By a conditioning operator, we mean a mapping (π |Ψ) that:

− inputs a possibility distribution π on a set Ω and a non-empty set Ψ ⊆ Ω, and

− returns a new possibility distribution for which (π |Ψ)(ω) = 0 for all ω 6∈ Ψ.

What are the reasonable conditioning operators?

2. Analysis of the Problem

Let us describe the desired properties of the conditioning operator.

First property: it should not matter how we previously judged alternatives that we
now know to be impossible. A first reasonable requirement is that since alternatives ω 6∈ Ψ are
excluded, their original possibility degrees should not affect the resulting degrees. In other words,
if two original possibility distributions π and π′ differ only by their values outside Ψ, then the
conditioning should be the same.

C1. If π|Ψ = π′|Ψ, i.e., if π(ω) = π′(ω) for all ω ∈ Ψ, then

(π |Ψ) = (π′ |Ψ).

Second property: order between possibility degree of different alternatives should not
change. Another reasonable condition is that while the numerical values of possibility degrees may
change, the order between these degrees should not change:

C2. If π(ω) < π(ω′) for some ω, ω′ ∈ Ψ, then

(π |Ψ)(ω) < (π |Ψ)(ω′).
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C3. If π(ω) = π(ω′) for some ω, ω′ ∈ Ψ, then

(π |Ψ)(ω) = (π |Ψ)(ω′).

Third property: it should not matter whether we learn the new knowledge right away
or in two steps. Often, we first learn some information, based on which the set of possible
alternatives is limited to a subset Ψ ⊂ Ω, and then learn some additional information according to
which the set of possible alternatives is even smaller Ψ′ ⊂ Ψ. In this case, :

− we first first condition the original degrees of possibility π with respect to Ψ, resulting in
π′ = (π |Ψ), and then

− we condition π′ with respect to the new set Ψ′, resulting in π′′ = (π′ |Ψ′) = ((π |Ψ) |Ψ′).

Alternative, we could learn both pieces of the information at the same time. In this situation, our
reaction to this new information would replace the original possibility distribution π with (π |Ψ′).

In both cases, we gain the exact same new information, so the resulting changes in possibility
degrees should be the same:

C4. If Ψ′ ⊂ Ψ, then ((π |Ψ) |Ψ′) = (π |Ψ′).
Fourth property: alternatives which were originally considered impossible should not
matter. Another condition is that if had an alternative ω0 which we originally believed to be
impossible – i.e., whose degree of possibility is 0 – then:

− this alternative should remain impossible after conditioning, and

− the possibility degrees of all other alternatives ω 6= ω0 should remain the same, whether we
keep the alternative ω0 in the remaining set Ψ or whether we explicitly delete ω0 from the
set Ψ.

This property can be described as follows:

C5. If π(ω0) = 0 for some ω0 ∈ Ψ, then

(π |Ψ)(ω0) = 0 and (π|Ψ−{ω0} |Ψ) = (π |Ψ)|Ψ−{ω0}.

Final property: invariance. As we have mentioned earlier, often, the only information that we
can extract from the experts is which alternatives have a higher degree of possibility and which
have a lower degree of possibility. In other words, what matters is the order between the degrees,
not the numerical values of the degrees. So, the situations should not change if we simply apply
some re-scaling that does not change the order (such as x→ x2), i.e., if we apply some increasing
one-to-one function T : [0, 1] → [0, 1] to transform each degree π(ω) into a degree T (π(ω)). The

corresponding re-scaled tuple will be denoted by Tπ: (Tπ)(ω)
def
= T (π(ω)).

It is reasonable to require that the result of applying the conditioning operator not change if
we apply such a re-scaling. In other words, the following two operations should leads to the exact
same result:
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− either we apply the conditioning in the original scale, i.e., transform π into (π |Ψ), and then,
apply the re-scaling T , resulting in T (π |Ψ);

− or we first apply the re-scaling, resulting in Tπ, and then apply the conditioning, resulting in
(Tπ |Ψ).

Thus, we arrive at the following requirement:

C6. For every increasing one-to-one function T : [0, 1]→ [0, 1], we have

(Tπ |Ψ) = T (π |Ψ).

Now, we are ready to formulate our main result.

3. Main Result

Proposition. The only conditioning operator that satisfies the properties C1–C6 is the min-based
operator (Dubois and Prade, 1984; Hisdal, 1978) for which:

• (π |Ψ)(ω) = 1 when ω ∈ Ω and π(ω) = max
ω′∈Ω

π(ω′);

• (π |Ψ)(ω) = π(ω) when ω ∈ Ω and π(ω) < max
ω′∈Ω

π(ω′); and

• (π |Ψ)(ω) = 0 when ω 6∈ Ψ.

Discussion. The usual derivation of the min-based conditioning (see, e.g., (Dubois et al., 1994)) is
to interpret the degree (A |B) as the maximal value for which A&B (with min as “and”-operation)
has the same truth value as (A |B) &B.

Our result shows that maximality can be replaced with invariance – which reflects the ordinal-
scale character of the corresponding possibility degrees.

Proof.

1. It is easy to show that the min-based operator satisfies the properties C1–C6.
To complete the proof, we need to prove that, vice versa,

− every conditioning operator that satisfies these five properties

− is indeed the min-based operator.

To prove this statement, we will consider two possible cases:

− the case when the set Ψ contains some alternative ω for which π(ω) = 1, and

− the case when the set Ψ does not contain any alternative ω for which π(ω) = 1.
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2. Let us first consider the case when the set Ψ contains some alternative ω for which π(ω) = 1. In
this case, the min-based formula leads to (π |Ψ)(ω) = π(ω) for all ω ∈ Ψ.

Let us show that this equality holds for all conditioning operators that satisfy the properties C1–
C6.

2.1. If there is no ω0 ∈ Ψ for which π(ω0) = 0, let us add such an element to our set Ω. According to
Property C5, this will not change the result. Thus, without losing generality, we can safely assume
that there is an element ω0 ∈ Ψ for which π(ω0) = 0.

As for the values π(ω) for ω 6∈ Ψ, we can use the property C1 to replace them with zeros.

2.2. Let us sort values ψ(ω) corresponding to different alternatives ω ∈ Ψ in increasing order. We
know that the resulting list of values includes 0 and 1, so this list has the form

v1 = 0 < v2 < . . . < vk−1 < vk = 1,

where k is the number of different values π(ω) corresponding to ω ∈ Ψ.
Let us use property C6 to prove that the values (π |Ψ) should also be from this list. Indeed, let

us consider the following strictly increasing function T (v): for vi ≤ v ≤ vi+1, we take

T (v) = vi +

(
v − vi
vi+1 − vi

)2

· (vi+1 − vi).

One can easily check that for this function, T (vi) = vi for all i, so T (π) = π. Thus, the property C6
implies that T (π |Ψ) = (π |Ψ), i.e., that for each value v = (π |Ψ)(ω), we should have T (v) = v.
But for the above function T (v), the only such values are v1, . . . , vk.

So, indeed, the values v1 < . . . < vk are mapped to the same k values. By properties C2 and
C3, equal values of π(ω) are mapped into equal values of (π |Ψ)(ω), and smaller values of π(ω) are
mapped into smaller values of (π |Ψ)(ω). Thus, the values v′i corresponding to vi are also sorted in
increasing order: v′1 < . . . < v′k. Each new value v′i must coincide with one of the original values vj .
So, in the increasing list v1 < . . . < vk of k values, we have k new values v′i which have the same
order. This implies that v′1 must be the smallest of vi, i.e., v′1 = v1, that v′2 be the second smallest,
i.e., v′2 = v2, and, in general, v′i = vi, i.e., indeed, (π |Ψ)(ω) = π(ω) for all ω ∈ Ψ.

3. Let us now consider the case when the set Ψ does not contain some alternative ω for which
π(ω) = 1.

In this case, we can also add (if needed) an element ω0 for which π(ω0) = 0, and sort the values
π(ω) corresponding to ω ∈ Ψ into an increasing sequence v1 = 0 < v2 < . . . < vk < 1; the only
difference is that in this case, the largest value vk in this increasing sequence is smaller than 1.

One of the new values should be equal to 1. So, due to Properties C2 and C3, only the largest
degree vk should be mapped into 1.

Similarly to Part 2 of this proof, we can prove that each of the the values v1, . . . , vk−1 maps
into one of the values v1, . . . , vk, and that if vi < vj , then v′i < v′j . By induction, we can prove

that v′i ≥ vi. Since we have only one additional value to move to, for each i, we have either c′i = vi
or v′i = vi+1. In other words, for each alternative, after conditioning, we will have either the same
degree of possibility as before, or the next one.
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Let use the Property C4 to prove, by contradiction, that a value vi < vk cannot be transformed
into the next value vi+1. Let us assume that, vice versa, there is an element ωi ∈ Ψ for which
π(ωi) = vi and (π |Ω)(ωi) = vi+1. To get a contradiction, let us consider the new set Ω∗ = Ω∪{ω∗},
with a new element ω∗, and a new possibility distribution π∗ for which:

− we have vi < π∗(ω∗) < vi+1 and

− we have π∗(ω) = π(ω) for all ω 6= ωi.

Let us consider two conditionining paths from Ω∗ to Ψ:

− in the first path, we go from Ω∗ to Ω and then from Ω to Ψ;

− in the second path, we go from Ω∗ to Ψ∗
def
= Ψ ∪ {ω∗} and then from Ψ∗ to Ψ.

According to the Property C4, the resulting value (π∗ |Ψ)(ωi) should be the same for both paths.
In the first path, first, we go from Ω∗ to Ω. This transition eliminates a single element ω∗ for

which π∗(ω∗) < 1. Thus, according to Part 2 of this proof, all the possibility degrees of remaining
elements remain unchanged. Thus, we have (π∗ |Ω) = π. We already know that (π |Ψ)(ωi) = vi+1.
Thus, due to Property C4, we have

(π∗ |Ψ)(ωi) = ((π∗ |Ω) |Ψ)(ωi) = vi+1.

On the other hand, in the second path, we first move from Ω∗ to Ψ∗. In this transition, we have
vk transformed into 1, and the original value π∗(ωi) = vi can either remain the same, or it can
be transformed to the next value which is now π∗(ω∗) < vi+1. In both cases, the new possibility
degree is smaller than vi+1: π(ωi) < vi+1. When we then reduce the set Ψ∗ to Ψ, then all the
alternatives for which we originally had π∗(ω) = π(ω) = vk and now have π′(ω) = 1 remain in
the set. Thus, all other alternatives – including the alternative ωi – according to Part 2 of this
proof, retain their values. For ωi, this implies that (π′ |Ψ)(ωi) = π′(ωi) < vi+1. Thus, we have
(π∗ |Ψ)(ωi) = π′(ωi) < vi+1, which contradicts to the above equality (π∗ |Ψ)(ωi) = vi+1.

This contradiction shows that the transformation from vi to vi+1 is indeed impossible. Thus, we
have v′i = vi.

So, indeed, we have derive the min-based conditioning from the properties C1–C6. The propo-
sition is proven.
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Approximation of ECG Signals using Chebyshev Polynomials
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Abstract: The ECG (Electrocardiogram) signal represents electrical activity of heart and is
recorded for monitoring and diagnostic purpose. These signals are corrupted by artifacts during
acquisition and transmission predominantly by high frequency noise due to power line interference,
electrode movements, etc. Addition of these noise change the amplitude and shape of the ECG signal
which affect accurate analysis and hence need to be removed for better clinical evaluation. In this
paper, ECG signal taken from MIT -BIH database is first denoised using Total Variation Denois-
ing (TVD); using Majorization minimization (MM) optimization technique. ECG signals generate
massive volume of digital data, so they need to be suitably compressed for efficient transmission
and storage. Hence, for efficient compression the signal is segmented into various sections using
Bottom-Up approach. The individual sections are then approximated using Chebyshev polynomials
of suitable orders. The performance of the approximation technique is measured by computing the
Maximum Absolute Error, the Compression Ratio, Root Mean Square Error, Percent Root Mean
Square Difference and Percent Root Mean Square Difference Normalized. The results are also
compared with other techniques as reported in the literature, where significant improvements in all
the performance metrics are observed.

Keywords: ECG signal, total variation denoising, majorization-minorization, bottom-up, Cheby-
shev nodes, Chebyshev approximation

1. Introduction

The electrocardiogram (ECG) describes the electrical activity of the heart. It conveys information
about structure of the heart and functions of its electrical conduction (Walraven, 2011). It is
obtained as voltage variations by placing electrodes at specific positions on the chest, arms and legs.
The ECG is characterized by a series of waves whose morphology and timing provide clinically useful
information. The time pattern that characterizes the occurrence of successive heartbeats is also
very important. The ECG signals are used to monitor drug and to detect metabolic disturbances.
A systematic interpretation of the ECG signals prevents overlooking of important abnormalities
of cardiac system like rhythm of heartbeats, size and position of chambers and the presence of
any damage to the heart’s muscle cells or conduction system, the effects of cardiac drugs, and the
function of implanted pacemakers (Braunwald, 1997).

A single normal cycle of the ECG represents the successive atria depolarization/repolarisation
and ventricular depolarization /repolarisation which occur with every heartbeat (Acharya et. al,
2007). These can be approximately associated with the peaks and troughs of the ECG waveform
labelled P, Q, R, S, and T as shown in Figure 1.

c© 2016 by authors. Printed in Germany.
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Figure 1. ECG Signal and its various waves.

The first step in the design of an ECG system involves understanding the nature of the signal
that needs to be acquired. The ECG signal consists of low amplitude voltages in the presence of
high offsets and noise. The common electrode used in ECG systems has a maximum offset voltage
of 300mV. The actual desired signal is 0.5mV superimposed on the electrode offset. ECG Signal
processing is a huge challenge since the actual signal value will be 0.5mV in an offset environment of
300mV. Other factors like AC power-supply interference, RF interference, electrode movement from
surgery equipment, and implanted devices like pace makers and physiological monitoring systems
can also impact accuracy (Bharadwaj and Kamath, 2011).

The amount of data involved in storage and transmission of digital ECG signals is quite large.
So it needs to be adequately compressed in a way so that it can be accurately reconstructed. The
ECG compression techniques are broadly classified as: direct methods, transform-based methods
and parameter extraction methods (Jalaleddine et. al, 1990). In direct methods, the original ECG
signal samples are compressed directly, and in transformation method the original samples are first
transformed and then compressed. In parameter extraction methods, the features of the processed
signal are extracted and then these features are used for the reconstruction of the signal (Jalaleddine
et. al, 1990).

Various time domain compression algorithms like FAN, AZTEC, CORTES and SAPA etc can
be found in the literature. These methods are based on the idea of extracting few significant signal
samples to represent the signal and then decoding the same set of samples. These techniques
are based on heuristics in the sample selection process. This makes them faster but suffer from
suboptimality (Zahhad, 2011).

Several compression algorithms including polynomial approximations and polynomial interpola-
tion have been proposed for ECG data compression. The advantage of polynomial approximation
is that it requires only polynomial coefficient describing the data signal and is able to approximate
the original ECG signal quite efficiently.
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Polynomials of maximum degree 3, including spline functions have been proposed for ECG
interpolation in (Karczewicz and Gabbouj, 1997). The representation of ECG signals using second
degree quadratic polynomials is studied by Nygaard et al in (Nygaard et. al, 1999). High degree
Legendre polynomials were used for ECG data compression (Philips, 1993; Colomer and Colomer,
1997; Tchiotsop et. al, 2007). Although Chebychev polynomials are widely used in mathematical
interpolation and approximation, ECG signal compression through Chebychev polynomials are
hardly found in the literature. In (Tchiotsop et. al, 2007) ECG data compression is done using
Discrete Chebyshev Transform by segmenting the signal into blocks which consist of multiple cardiac
cycles.

These methods are mainly focused on approximation of the entire ECG beat without paying
attention to the importance of the intervals of the signal which is the case for vital signals. The
signal is often broken into segments within which the signals can be considered stationary. In this
way, each part can be analyzed or processed separately.

In this paper, we propose a computationally efficient method to model ECG signals through
Chebyshev polynomials. The ECG signal contains an important noise component so a preprocess-
ing is applied before the segmentation effectively takes place. The ECG signal is first denoised
using Total Variation Denoising using Minimization-Majorization (TVD-MM) technique. In order
to have a better compression ratio we must have a lower order of the polynomial. So, the denoised
signal is then segmented into segments using Bottom-Up approach. Next, we model each segment
independently using Chebyshev interpolation and combine them to reconstruct the complete signal.

The rest part of the paper is organized as follows: in section 2, we present the computational
performance metrics to be applied to measure the efficiency of the method. In section 3 and 4,
we give a brief introduction to Chebychev polynomials and Chebyshev interpolation. In section 5,
we describe the proposed method along with the algorithm to achieve ECG data compression. In
section 6, we present the implementation of our method on the ECG signals using the MIT-BIH
arrhythmia database and discuss the results obtained. In the last section we give the conclusions
regarding the presented approach.

2. Evaluation of Compression Method

Let N be the total number of the ECG samples and p(xi) and f(xi) represent the samples in
original and reconstructed signal. In most ECG compression algorithms, the various performance
metrics are as:

Root Mean Square Error (RMSE): is the average of the square of the errors (Sormno and
Laguna, 2006)

RMSE =

√∑N
i=1(p(xi)− f(xi))2

N
(1)

Maximum Error (Maxerror): is the maximum error (Hadjileontiadis, 2006)

MaxError = max
N

(|(p(xi)− f(xi))|) (2)
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Compression Ratio (CR): is defined as the ratio between the number of bits needed to represent
the original and the compressed signal (Zahhad et. al, 2010). We can also define it as the ratio
between the number of samples needed to represent the original and the compressed signal.

CR =
N

n
(3)

where n is the order of the interpolating polynomial
Percent Root Mean Square Difference (PRD): is the measure of acceptable fidelity (Zahhad et.

al, 2010)

PRD% = 100

√∑N
i=1(p(xi)− f(xi))2∑N

i=1 p(xi)
2

(4)

Percent Root Mean Square Difference Normalized (PRDN): is the normalized version of PRD
(Fira and Goras, 2008) and depends on the signal mean value pm

PRDN% = 100

√∑N
i=1(p(xi)− f(xi))2∑N
i=1(p(xi)− pm)2

(5)

3. Chebyshev polynomials

The Chebyshev polynomials (Gil et. al, 2007) of first type and degree n are defined in terms of
trignometric cosine function as:

Tn(x) = cos(n cos−1(x)) for n ≥ 0 (6)

The expressions for Chebyshev polynomials are obtained from the recursive relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1 (7)

The Chebyshev polynomials of degree n, Tn(x), has n+ 1 zeros in the interval [-1, 1], which can
be calculated as

xj = cos

(
2j + 1

2n+ 1
π

)
, 0 ≤ j ≤ n (8)

The roots of the Chebyshev polynomial are also known as Chebyshev points or nodes. In the
same interval the n+ 1 extrema of the polynomial Tn(x) are located at

x̃j = cos

(
πj

n

)
, 0 ≤ j ≤ n (9)
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At all the maxima Tn(x) = 1, while at all the minima Tn(x) = −1. The Chebyshev polynomials

are orthogonal in the interval [−1, 1] over the weight w(x) =
(
1− x2

)−1/2
. They also satisfy discrete

orthogonality relationships. Other properties of Chebyshev polynomials can be found in (Szego,
1975).

4. Polynomial Approximation using Interpolation

A polynomial approximation problem is of finding a polynomial close to a given function and has
the freedom to select the significant points. Once the significant points have been fixed, it is reduced
to an interpolation problem that can be solved by polynomial interpolation (Birkhoff and Boor,
1965). Let p(x) represent ECG segment vector of length N consisting of samples of p(xi) such that

p(x) = {p(x0), p(x1), ..., p(xN )} , x ∈ [a, b]

Given a set of N + 1 data points (xi, p(xi)) we want to construct a polynomial f of degree N
with the property

f(xi) ≈ p(xi), i = 0, 1, ...N

Suppose the interpolation polynomial is in the form

f(x) = aNx
N + aN−1x

N−1 + ...+ a2x
2 + a1x+ a0, x ∈ [a, b] (10)

which means that

f(xi) ≈ p(xi)∀i ∈ {0, 1, ...N} (11)

Substituting Eq.(11) in Eq.(10) we get a system of linear equations which in matrix form reads
xN0 xN−10 · · · x0 1

xN1 xN−11 · · · x1 1
...

...
...

...

xNN xN−1N · · · xN 1



aN
aN−1
...
a0

 =


p(x0)
p(x1)
...
p(xN )

 (12)

The matrix on the extreme left is the Vandermonde’s matrix. The system given by Eq.(12) would
have a unique solution if the determinant of the Vandermonde matrix does not vanish (Bjorck and
Pereyra, 1970). Solving this system for ak we can construct the interpolating polynomial f(x).

Alternatively we can write the required polynomial explicitly using Lagrange’s formula (Yang
et. al , 2005; Chan et al, 2001) as

f(x) =

N∑
i=0

f(xi)

N∏
j=0
j 6=i

x− xj
xi − xj

, x ∈ [a, b] (13)
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Let us now construct yet another interpolating polynomial p(x) by sampling f(x) at n interpo-
lation points such that n < N . We can estimate the difference between them, i.e., the interpolation
error E(x). Let Πn denote the space of polynomials of degree≤ n, and let Cn+1[a, b] denote the
space of functions that have n + 1 continuous derivatives on the interval [a, b]. Then from the
truncation error from the Taylor series, we have this theorem:

Theorem 1: Let f(x) ∈ Cn+1[a, b]. Let p(x) ∈ Πn such that it interpolates f(x) at the n + 1
distinct points x0, ..., xn ∈ [a, b]. Then ∀ x ∈ [a, b], ∃ ξ ∈ [a, b] such that

E(x) = f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
j=0

(x− xj)

where ξ is an intermediate point between x0 and xn (Caporale and Cerrato, 2008).
If we are free to choose the interpolating points x0, ..., xn within this interval, then the product

n∏
j=0

(x−xj) can be minimized which in turn would minimize the interpolating error E(x). This can

be achieved by choosing interval as [−1, 1] and the interpolating points xj as the Chebyshev points
(Yang et. al , 2005). The following theorem gives an estimate of the error for the above case.

Theorem 2: Assume that p(x) interpolates f(x) at x0, x1, ..., xn. Also assume that these n+ 1
interpolation points are the (n + 1) roots of the Chebyshev polynomial of degree Tn+1(x), which
are given by Eq.(8). Then ∀ x ∈ [−1, 1],

|f(x)− p(x)| ≤ 1

2n(n+ 1)!
max
ξ≤1
|fn+1(ξ)||

Our goal is not to approximate a function p(x) on the interval [−1, 1], but to approximate the
values of the function p(x) corresponding to the discrete set of points given by Eq.(8). An arbitrary
function p(x) can be approximated in the interval [−1, 1] (Mason and Handscomb, 2002) by

p(x) =
n∑
k=0

ckTk(x), x ∈ [−1, 1] (14)

where the coefficients cj are defined as

c0 =
1

n+ 1

n+1∑
j=1

p(xj)

ck =
2

n+ 1

n+1∑
j=1

p(xj)Tk(xj), k = 1, ..., n (15)
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5. Proposed Method

The signal encounters various types of artifacts during acquisition, transmission and storage. The
noises introduced are due to power line interference (PLI), body movements, electrode contacts,
electromagnetic field interference, and respiration movements etc (Acharya et. al, 2007). Presence
of noises in ECG signals degrades the signal quality and thus affects the visual diagnosis and
feature extraction. Thus, noise removal becomes an essential part in ECG preprocessing for better
performance in ECG analysis and diagnosis.

Total variation denoising (TVD) is an approach for noise reduction and preservation of sharp
edges of signals. The total variation (TV) of a signal measures how much the signal changes between
signal values. Total variation denoising (TVD) is based on the principle that signals with excessive
and possibly spurious detail have high total variation. According to this principle, reducing the total
variation of the signal subject to it being a close match to the original signal, removes unwanted
detail whilst preserving important details such as edges. Unlike a conventional low-pass filter, TV
denoising is defined in terms of an optimization problem. Here we first apply the majorization-
minorization approach to optimize the total variation in the ECG signals (Yadav and Ray, 2015).

The purpose of the segmentation is to divide a signal to several segments with the same statistical
characteristics such as amplitude and frequency. A segmentation algorithm has a global perspective
that it produces the best Piecewise Linear Representation (PLR) of data with the least amount
of error (Keogh et. al, 2001). Since statistical characteristic of ECG changes with time, so ECG
signals are considered as non-stationary signals. Analysis of stationary signal is easier as compared
to non- stationary signal so signal segmentation is applied as a pre-processing step for non-stationary
signal analysis. Hence, we apply the The Bottom Up algorithm, also called as iterative merge which
begins by dividing the original time series data of length n into a large number of segments and is
consequently merged into bigger segments until stopping criteria is met (Yadav and Ray, 2016).

Since we are processing one segment, our working domain is in the interval [a, b]. So, we first
transform the interpolation interval y ∈ [−1, 1] using

x =
(b− a)y + (a+ b)

2
(16)

This converts the interpolation problem for f(x) on [a, b] into interpolation problem for f(x) =
g(x(y)) in y ∈ [−1, 1]. The Chebyshev points in the interval y ∈ [−1, 1] are the roots of the
Chebyshev polynomial Tn(y), i.e.,

yj = cos

(
2j + 1

2n+ 1
π

)
, 0 ≤ j ≤ n

The corresponding n+ 1 interpolation points in the interval [a, b] using Eq.(16) are now

xj =
(b− a)yj + (a+ b)

2
, 0 ≤ j ≤ n (17)

The interpolation error now is given by

|f(x)− p(x)| ≤ 1

2n(n+ 1)!

∣∣∣∣b− a2

∣∣∣∣n+1

max
ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣
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In our method we need to construct the function f(x) using Eq.(13) with all the N ECG samples
of one segment. Then we find the Chebyshev nodes and subsequently the interpolating polynomial
using these nodes. Next, we calculate the error and if the error is not within our tolerance, we
increase the order. Since an ECG signal sampled value may not be available at the Chebyshev
nodes, we derive this value by linear interpolation using adjacent ECG sampled values. We continue
doing these operations till our error criterion is met.

We apply the same technique to all the segments and model each of them independently using
Chebyshev interpolation method. We present here an algorithm to show the steps of our method.
Algorithm Chebyshev poly approx=Chebyshev poly approx (N, ε, f(x), p(x), [a, b])

Inputs: p(x), [a, b], ε = 10−3

Outputs: f(x)
BEGIN algorithm

1. Fix the order n of the Chebyshev approximation.

2. Transform the Chebyshev nodes on the domain [a, b] and find the zeros or the Chebyshev nodes
xj using Eq.(17)

3. Find the function value f(xj) by linear interpolation using the adjacent integral points around
xj

4. Construct interpolating polynomial f(x) using Eq.(13).

5. Calculate error E(x) = max |f(x)− p(x)|

6. If E > ε then n = n+ 1 and go to step 2

END algorithm

6. Implementation and Results

An ECG signal is not linear, rather more curvaceous consisting of waves of various shapes. For
testing the performance of our algorithm we conducted our tests in MATLAB environment. An
ECG signal of duration 10 seconds with 8274 samples is taken from MIT-BIH (Goldberger et. al,
2000) arrhythmia database. Each file is sampled at 720Hz sampling frequency with 11 bits per
sample of resolution. The denoised signal is obtained using the TVD approach. Since the ECG
signal is quasi-stationary, segmentation plays very important role. The segmented points must be
related with the diagonastical parameters, because they determine the diagonastical intervals and
the wave amplitudes of the ECG. Peter Kovacs (Kovacs, 2012) had divided the ECG signal into 12
segments. In order to keep the model as simple as possible, number of segments should be minimal.
So the number of segments has to be intelligently decided. Using Bottom Up approach we divide
the denoised ECG signal into 10 segments so that the significant points and waves remain preserved
at the time of approximation.
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Since the shape of ECG is variable within and across patients, so all the segments cannot be
approximated by a signal polynomial. Instead a number of polynomials are to be reconstructed
depending upon the shape of segments. The proposed algorithm is implemented and tested over
each segment of the ECG signal by choosing the order of polynomial in such a way so as to
reduce the MaxError. Figure 2 to Figure 4 show the 10 original ECG signal segments and their
approximated signals with their Chebyshev nodes marked as ’∗’. The original signal is shown in
’red’ and the reconstructed signal is shown in ’blue’. Figure 5 shows the complete original and
reconstructed signal.

Figure 2. Segments 1 to 4 of Original and Reconstructed signals.
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Figure 3. Segments 5 to 8 of Original and Reconstructed signals.

The performance of the Chebyshev approximation technique is measured in terms of CR,
RMSE, MaxError, PRD and PRDN . Table I shows the results obtained for individual segments.
The orders of the polynomials for each segment are chosen to retain the original shapes of the
reconstructed signals. Compression ratios for linear sections are higher and can be approximated
by third order Chebyshev polynomial with PRD approximately equal to 0.05. MaxError for
individual segments were also calculated and the highest is nearly 5.2 for segment number 6. ECG
compression techniques with less than 10 % approximation error are considered to be medically
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Figure 4. Segments 9 and 10 of Original and Reconstructed signals.

Table I. Performance metrics for all the segments.

Segment

Number Order n N CR RMSE MaxError PRD PRDN

1 3 197 65.67 1.5526 4.3348 0.0747 34.6824

2 3 65 21.67 1.2036 2.2892 0.0579 32.2823

3 3 19 06.33 0.9568 1.4826 0.0455 7.4977

4 4 55 14.75 2.7307 3.0925 0.1304 19.7871

5 3 151 50.33 1.3628 3.0040 0.0658 25.5228

6 5 171 34.20 1.7778 5.2056 0.0857 31.4943

7 3 21 7.00 1.4089 2.9302 0.0687 4.3420

8 3 23 7.67 0.9004 1.3611 0.0448 3.9164

9 5 167 33.40 1.8528 3.7423 0.0887 15.2980

10 3 140 46.67 2.3227 2.7732 0.1116 25.3066

Average - - 28.6683 1.6069 4.2298 0.0774 20.0130

accepted (Sandryhaila et. al, 2012). The maximum value of PRD is 0.13 for segment number 4 and
average PRD obtained is 0.0774 which is also acceptable for ECG compression.

Similar approximation technique was used in (Yadav and Ray, 2013), but it was used on a
simulated standard ECG signal with absolutely no noise, where one cycle of ECG signal was
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Figure 5. Original and Reconstructed ECG Signal with all its 10 segments.

segmented into seven sections on the basis of shape and duration of various waves of ECG. Hence,
we have kept it outside the purview of our comparison.

The values of performance metrics obtained by the proposed method are much less than those
shown in (Fira and Goras, 2008) with different ECG compression techniques, viz., Wavelet and
Huffman, JPEG2000, SPHIT and other traditional techniques for one cycle of ECG signal. The
mean value of CR obtained in (Fira and Goras, 2008) is 18.27 which is inferior than the average
CR of 28.67 obtained by the proposed method. In (Tchiotsop et. al, 2007) ECG signals were
approximated using Jacobi polynomials, where the highest compression achieved was 11. Hermite
functions (Sandryhaila et. al, 2012) were also used to compress QRS complex of ECG signals and the
average CR achieved was 11 with 25% approximation error. The results obtained by Sandryhailla et.
al. were better than the results obtained by other transformation techniques. In (Jokic et. al, 2011)
polynomial models of ECG signals were developed where the lowest and highest PRD observed
were 3.5 and 10.8 respectively. In (Zahhad et. al, 2010) Discrete Wavelet Transform was used to
compress ECG signals where the highest CR of 40 was achieved with PRD of 2.7, and lowest CR
was 3.4 with PRD of 0.2 for one dataset. Hence, we can claim the proposed technique is quite
suitable for ECG compression.

7. Conclusion

In this paper, a model is designed to compress ECG signals using Chebyshev polynomials. The signal
was taken from MIT-BIH database which was denoised using the TVD-MM approach. Bottom-Up
technique was then used to find the break points. The individual segments obtained were then
approximated using Chebyshev polynomials. From the results, it was observed that the order of
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Chebyshev polynomials depends upon the shape of various sections of ECG wave. Waves having
zero or constant slope can be approximated by lower order Chebyshev polynomials, whereas waves
having variable slopes require higher order Chebyshev polynomials. The approximated models are
evaluated in terms of CR, RMSE, MaxError, PRD and PRDN . It was observed that the results
obtained were superior than those reported in the existing literature. Also accuracy can be increased
by breaking the complete signal into more number of segments at the cost of CR.
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Abstract: Many natural phenomena can be modeled as ordinary or partial differential equations.
A way to find solutions of such equations is to discretize them and to solve the corresponding
(possibly) nonlinear large systems of equations; see (Li and Chen, 2008).

Solving a large nonlinear system of equations is very computationally complex due to several
numerical issues, such as high linear-algebra cost and large memory requirements. Model-Order Re-
duction (MOR) has been proposed as a way to overcome the issues associated with large dimensions,
the most used approach for doing so being Proper Orthogonal Decomposition (POD); see (Schilders
and Vorst, 2008). The key idea of POD is to reduce a large number of interdependent variables
(snapshots) of the system to a much smaller number of uncorrelated variables while retaining as
much as possible of the variation in the original variables.

In this work, we show how intervals and constraint solving techniques can be used to compute
all the snapshots at once (I-POD); see (Granvilliers and Benhamou, 2006; Kreinovich and Ceberio,
2006; Moore and Kearfott, 2009). This new process gives us two advantages over the traditional
POD method: 1. handling uncertainty in some parameters or inputs; 2. reducing the snapshots
computational cost.

Keywords: Model-Order Reduction; Proper Orthogonal Decomposition; Large Nonlinear Systems
of Equations; Interval Constraint Solving Techniques

1. Introduction

Many real life phenomena or situations can be represented by mathematic models. Because of the
dynamic nature of these phenomena, the associated models could be, for instance, partial differ-
ential equations (PDEs). These kind of equations arise in many engineering problems describing
phenomena such as the distribution of heat in a given rod or plate over time (heat equation), the
description of waves like those of vibrating strings, and sound and water waves (wave equation),
gas dynamics and traffic flow (Burgers’ equation); see (Sharan and Pradhant, 2013; White, 2013).

A way to find an approximation of the solution of differential equations, either ordinary or
partial, is to discretize the domain of the solution and to form a system of algebraic equations: this
system of equations can be linear or nonlinear depending on the nature of the PDE.

In order to obtain a good accuracy in the approximation of the sought solution, the domain has
to be discretized in many elements and nodes, leading to a large system of equations inheriting

c© 2016 by authors. Printed in Germany.
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several issues, such as: 1. not knowing about the existence and/or uniqueness of the solution of the
system of equations, 2. storage, 3. high computational cost, 4. rounding errors.

To overcome these issues, several techniques have been developed to find a subspace where the an
acceptable approximation of the solution of the system of equations lie. This process of identifying
such subspace and reducing a large problem to a smaller one is known asModel-Order Reduction

(MOR).
Proper Orthogonal Decomposition (POD) is a broadly used and effective method to

identify a reduced subspace and reduce the original large problem to a much smaller one. This
method is based on Principal Component Analysis (PCA) (Cai and White, 2003; Marquez and
Espinosa, 2013; Rathinam and Petzold, 2003). The idea behind POD consists in the following.
First, identifying the function U(x, t;λ), where x for solving the high dimensional Full-Order Model
(FOM) for different values of its parameter, λ (chosen in a given interval or cartesian product of
intervals). The function U(x, t;λ) is defined in a space-temporal domain, where x represents the
spatial variable and t the temporal one. For each parameter λ, after the FOM has been solved, m
samples, U(x, ti, λ) are selected, commonly referred as snapshots, with 1 ≤ i ≤ m. In this work, the
instants of time at which the samples were selected were chosen in a uniform distribution. These
snapshots are then arranged into a matrix A, which is factored: A = UΣV T , using Singular Value
Decomposition (SVD). The basis of the reduced subspace is made of the first k columns, which are
the ones that preserve most of the correlation.

Although POD is one of the most popular approaches to MOR, it presents several disadvantages,
the main drawback being that it requires a series of offline computations in order to form the matrix
of snapshots. The quality of the resulting reduced basis heavily depends on the choice of parameters
and inputs, and on the accuracy of these over which the snapshots are computed.

In this work, we explored the idea of computing snapshots as a result of interval computations
that we then sample: this leads us to one – interval – solving process as opposed to computing
snapshots as a result of computations on sample parameters (many solving processes). This led
to what we called an Interval-POD approach (IPOD), which has advantages beyond the mere
computations of snapshots: if POD can handle intervals, it can therefore handle uncertainty as
well. This would allow models to factor in uncertainty while still making it possible to process via
MOR. Our preliminary tests show promise.

2. Background

Let us start by recalling the type of problems that we are attempting to solve. Many real-life
phenomena are modeled and result in very large (most likely) nonlinear systems of equations that
need to be solved. Solving these problems boils down to finding the zeroes of large-dimensional
functions. Traditionally, finding zeroes of functions is achieved via the use of Newton methods.

In this section, we review basic notions about the components that motivate and make up our
approach. Namely, we start by recalling the Newton’s approach, which motivates the need to Model-
Order Reduction. We then go over the MOR concept. Finally, we review interval computations and
interval constraint solving techniques, as they are essential to our proposed IPOD.
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2.1. The Newton Method

The Newton method is an iterative procedure that finds the zeroes of continuously differentiable
functions F : Rn → R

n. The formulation of the method is given by:

JF (xn)(xn+1 − xn) = −F (xn) (1)

where JF (xn) is the n× n Jacobian matrix of F .
If F is twice differentiable and the Hessian ∇2F (x) is Lipschitz continuous in a neighborhood

of a solution x∗ then:

1. if the initial point x0 is sufficiently close to x∗, the sequence of iterations converges to x∗; and

2. the rate of convergence of {xk} is quadratic.

The Newton method is outlined in Table I:

Table I. Newton Method Outline.

Given an initial point x0

for i=1 until convergence

Compute F = F (x0) and J = JF (x0)

Solve the linear system of equations: J∆x = −F ,

Compute: xi+1 = xi +∆x

end for

The Newton method converges if certain conditions are satisfied; for example, if a stationary
initial point is chosen or if the approach oulined above enters in a cycle, the Newton method will
not converge. Also, if the Jacobian matrix is singular or if any of its entries is discontinuous at the
root, the convergence may fail. If the Jacobian is singular at the root of the function or the Hessian
is not defined at it, the process may converge but not in q-quadratic order.

In addition to the above limitations of the Newton’s approach, let us recall that the systems
that are being considered for solution are of very large size. Not meeting a q-quadratic order of
convergence is much more critical on such large spaces than it would be on smaller spaces.

To overcome all issues above mentioned, the solution is sought on a subspace where the conver-
gence conditions are met, hence Model-Order Reduction.

2.2. Model-Order reduction

The main idea of the concept of Model Order Reduction (MOR) is as follows:
Let T : V → V be a bijective linear transformation. Then for every b ∈ V , there exists a unique

x ∈ V such that T (x) = b. Every linear transformation has a matrix representation (Hoffman,
1971). In this case, let us call A the matrix representation of T . Thus, finding x such that T (x) = b
is equivalent to solving the linear system:

Ax = b. (2)
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If the dimension of V is n, then Eq.(2) is a n× n linear system of n equations and n unknowns.
We can assure that there exists W , a subspace of V , whose dimension is k ≪ n and such that

x ∈ W . This is true because, in particular, the subspace spanned by {x} is a subspace of V , which
contains x and whose dimension is 1 ≪ n.

Since W is a subspace of V , there exists a base B = {w1, w2, . . . , wk} such that every element
w ∈ W can be expressed as a linear combination of the elements of B (Cotlar, 1974). In particular,
if w = x,

x =
k

∑

i=1

yiwi. (3)

Since every base uniquely determines a subspace of V , we can, without loss generality, speak about
subspace W and its base without difference. By writing Eq.(3) in matrix form, we obtain

Wy = x. (4)

After substituting (4) in (2), we have:
(AW )y = b, (5)

that can be solved using the normal equation (Bjork, 1996)

(AW )T (AW )y = (AW )T b, (6)

which is itself a k × k linear system of equations. After we identify y, we can use Eq.(4) to find x.
Once the subspace is found, the approximation of the solution is given as the projection of it on

the subspace obtained. This method truncates the solution of the original system to an appropriate
basis. Let us illustrate this method by considering a basis transformation T that maps the original
n-dimensional state space x into a vector that we will denote by

T (x) =

(

T1(x)
T2(x)

)

=

(

x̂
x̃

)

where x̂ is k-dimensional. Suppose that T has at least a right-inverse. Let us denote S = T−1 then
S can be written as

S = (S1 S2)

and

I =

(

T1

T2

)

(S1 S2)

=

(

T1S1 T1S2

T2S1 T2S2

)

(7)

=

(

Ik 0
0 In−k

)

. (8)

Since T1S1 = Ik, we have Π = S1T1 is an oblique projection along the kernel of T1 onto the
k-dimensional subspace that is spanned by the columns of the matrix S1.
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Figure 1. An oblique projection can be see as the shadow cast by objects on the ground when the sun is not directly
vertical. Image taken from the site: http://www.schoolkitchengarden.com.au/design-your-garden/.

Let
dx

dt
= f(x, u),

y = g(x, u),
x(t0) = x0

(9)

be the dynamical system, where u is the input of the system, y is the output, x the so-called state
variable. If we substitute the projection into the dynamical system Eq.(19), we obtain

dx̂

dt
= T1f̂(S1x̂+ S2x̃, u),

y = ĝ(S1x̂+ S2x̃, u).
(10)

The approximation occurs when we delete the terms involving x̃

dx̂

dt
= T1f̂(S1x̂, u),

y = ĝ(S1x̂, u).
(11)

In order to obtain a good approximation to the original system, the term S2x̃ must be sufficiently
small.

2.3. Interval Constraint Solving Techniques

The method that we are proposing in this article consists in expanding POD-based MOR techniques
to interval computations (as we will describe in Section (4). Indeed, we aim to group the (possibly
many) computational processes over the reals required to generate all snapshots into one single
computational process over intervals that encompasses all computations over the reals.

In this subsection, we give a brief overview of interval computations and how to solve systems of
equations that involve intervals; for more details about the field, please see (Moore and Kearfott,
2009).
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2.3.1. Computations with Intervals
Let us start by pointing that in what follows, when mentioning intervals, we actually mean closed
intervals. In addition, for simplicity, when we talk about intervals, we will talk about real-value-
bounded intervals (not just floating-point-bounded intervals as is commonly the case when imple-
mented on a computer).

So in this work, an interval X is defined as follows:

X = [X, X] = {x ∈ R : X ≤ x ≤ X}. (12)

Operations on intervals are simply defined as follows: Since x ∈ X means that X ≤ x ≤ X, and
y ∈ Y means that Y ≤ y ≤ Y the followings operations are defined based on its infimum and
supremum:

Addition: X + Y = [X + Y ,X + Y ] (13)

Substraction: X − Y = [X − Y ,X − Y ] (14)

Multiplication: X · Y = [minS,maxS], where S = {XY ,XY ,XY ,XY } (15)

As we observe above, combining intervals with addition, subtraction, and multiplication, always
results in one interval. However, it is not always the case without extra care. For instance, the
division of an interval by another one that contains 0 should result in two disjunct intervals.
To avoid such cases with compromise the nature of traditional interval computations (according
to which combining intervals should result in an interval), we generalize the combination of two
intervals as follows:

∀X,Y intervals, X♦Y = �{x♦y, where x ∈ X and y ∈ Y } (16)

where ♦ stands for any arithmetic operator, including division, and � represents the hull operator.

More generally, when carrying out more general computations involving intervals, e.g., computing
the interval value of a given function f : Rn → R on interval parameters (or a mix of interval and
real-valued parameters), we have the following property:

f(X1, . . . , Xn) ⊆ �{f(x1, . . . , xn), where x1 ∈ X1, . . . , xn ∈ Xn} (17)

where f(X1, . . . , Xn) represents the range of function f over the domain X1 × . . . × Xn and
�{f(x1, . . . , xn), where x1 ∈ X1, . . . , xn ∈ Xn} represents the smallest closed interval enclosing
this range. Computing the exact range of f over intervals is therefore a very hard problem and
instead, we approximate the range of f over domains using what we call an interval extension of
f , which is in fact a surrogate interval function F .

Interval extensions of a given function f have to satisfy the following (very lose) property:

f(X1, . . . , Xn) ⊆ F (X1, . . . , Xn) (18)
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which to some extent would allow F to be the function that maps any input to the interval
[−∞,+∞]. More pragmatically, the aim is to identify a function F that does not dramatically
overestimate the range of our original function f (the closer to the range the better of course,
but cost of achieving better range is also an issue). Many interval extensions exists. The most
common one is the so-called natural extension, which is a simple interval extension of the syntactical
expression of f : arithmetic operations are evaluated using interval rules as shown above, and any
other single operator – e.g., power – has its own interval extension; see (Moore and Kearfott, 2009)
for more details. Other extensions include Trombettoni et Al.’s occurrence grouping approach (
Araya, Neveu, and Trombettoni, 2012). In this work, we use interval computations provided in
RealPaver (Granvilliers and Benhamou, 2006) and the natural extensions this software provides.

2.3.2. How to Solve Nonlinear Equations with Intervals?
The premise of our approach is that we will replace several real-valued computational processes by
one interval-based computational process by abstracting one real-valued parameter into an interval
parameter. Each process (real-valued or interval) consists in solving a (most likely) nonlinear system
of equations. In this subsection, we give the reader an overview of the way we proceed to solve a
nonlinear system of equations that involves intervals.

We choose to solve nonlinear equations using interval constraint solving techniques. Constraint
solving techniques allow to solve systems of constraints. Generally speaking, a constraint describes
a relationship that its variables need to satisfy. A solution of a constraint is an assignment of values
to the variables of the given constraint such that the relationship is satisfied.

In our case, each of our nonlinear equations fi(x1, . . . , xn) = 0 is a constraint: it establishes a
relationship that the values of the variables should satisfy, in this case so that fi(x1, . . . , xn) be
equal to 0. Our system of nonlinear equations is therefore a system of constraints and our goal is
to find values of the variables of this system that are such that: ∀i, fi(x1, . . . , xn) = 0.

Constraint solving techniques allow us to identify such values of the parameters that satisfy
the constraints. Interval constraint solving techniques (Mackworth, 1977; Jaffar and Maher, 1994)
produce a solution set (set of the solutions of the constraint system) that is interval in nature
(this is what you will see in the graphs plotting our experimental results in Section (5)): it is a
set of multi-dimensional intervals (or boxes whose dimension is n, the number of variables) that
is guaranteed to contain all the solutions of the constraint problem (in our case, of the nonlinear
system of equations).

The guarantee of completeness provided by interval constraint solving techniques comes from
the underlying solving mode: a branch-and-bound (Kearfott, 2007) (or branch-and-prune for faster
convergence (Caroa, Chablata, and Goldsztejnb, 2014)) approach that uses the whole search space
as a starting point and successively assess the likeliness of finding solutions in the given domain
(via interval computations) and possibly (if Branch and Prune) reduce it, and discard domains that
are guaranteed not to contain any solution. Note: while Branch-and-Bound algorithms only assess
domains for likeliness of containing a solution (it is a keep or discard approach), Branch-and-Prune
algorithms first use the constraints to reduce the domains to consistent domains (using appropriate
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consistency techniques based on interval computations) and the outcome (empty domain or not,
small enough or not to be called a solution) decides whether to continue exploring the domain or
not.

For instance, if on a given domain D ⊂ R, any of the fi is such that 0 6∈ Fi(D), where Fi is an
interval extension of fi, then we can conclude that there is no zero of our system of equations in D
and discard it altogether. In Table II, we outline the generic Branch-and-Bound approach, which is
the underlying principle of search in interval constraint solving techniques, and allows to guarantee
completeness of the search.

Table II. Generic Branch-and-Bound Algorithm.

Input: System of constraints C = {c1, . . . , ck}, a search space D0.

Output: A set Sol of interval solutions (boxes of size n, the number of variables)

Set Sol to empty

If ∀i, 0 ∈ Fi(D0) then:

Store D0 in some storage S
1

While (S is not empty) do:

Take D out of S

If (∀i, 0 ∈ Fi(D)) then:

If (D is still too large2) then:

Split3 D in D1 and D2

Store D1 and D2 in S

Else:

Store D in Sol

Return Sol

Using interval computations carries a lot of advantages, one of which being that the search can
be guaranteed to be complete and that since intervals are used (interval computations to assess
whether a domain is a viable option of not), uncertainty can easily be added and seamlessly handled.
This however comes at a cost: interval solving processes are usually more computationally taxing
that regular real-valued ones. Nevertheless, in what follows we will show that, when comparing
our interval-based approach to real-valued processes that have to be repeated countless times, then
the extra cost of interval computations is counterbalanced and our approach more computationally
effective (as shown in Section 5).

1
S could be a queue, a stack, a priority queue, etc.

2 The size of the domain is a stopping criterion: once we have achieved a given precision ǫ, there is no need to keep
exploring the domain, it is considered an interval solution.

3 Literature is full of approaches to splitting, including splitting in more than two pieces. Here we assume that
we split in two. The type of splitting (where? on which domain? or even in how many pieces?) does not affect the
generic algorithm.
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3. Proper Orthogonal Decomposition

In this section, we study the statistical procedure of Principal Component Analysis (PCA), which
uses orthogonal transformation to convert a set of observations of possibly correlated Random
Variables into a set of linearly uncorrelated ones with the largest possible variance, named principal
components. The number of principal components is less than or equal to the number of the original
random variables.

Using the same procedure as in (PCA), it is possible to find a set of linearly independent vectors
from a set of linearly dependent ones, whose spanned space is practically the same. This procedure
is named Proper Orthogonal Decomposition (POD), which we also describe here.

3.1. Principal Component Analysis

When information from a data sample is collected, usually we take the maximum number of
variables. However, if we take too many variables from a data sample, for instance 20 variables, we
must consider

(

20
2

)

= 190 possible correlation coefficients. If you have 40 variables that number is
increased to 780. Obviously, in this case it is difficult to visualize relationships between variables.
Another problem that arises is the strong correlation that often occurs between variables: if we take
too many variables (which generally happens when much is not known about data, or we are only
interested in exploratory tests), it is normal that they are related or they measure the same thing
under different viewpoints. For example, in medical studies, blood pressure at the heart’s outlet
and out of the lungs are strongly related.

Therefore, it is necessary to reduce the number of variables. It is important to highlight that
the concept of major information is related to the greater variability of the data or variance. The
greater the variability (variance) of the data, the more information this data has.

Studying the relationships that exist between p correlated variables (which commonly measure
information) transforms the original set of variables in another new set of uncorrelated variables
together (that has no repetition or redundancy on the information) called a set of principal
components.

3.2. Principal Components

Let us consider a number of variables X = (x1, x2, . . . , xn) describing a group of objects or indi-
viduals and to calculate, from them, a new set of variables (y1, y2, . . . , yn) uncorrelated with each
other, whose variances will decrease gradually.

Each yj (where j = 1, . . . , n) is a linear combination of the original variables x1, x2, . . . , xn, i.e

yj = v1jx1 + v2jx2 + . . .+ vpjxn

= Xvj ,

where vTj = (v1j , v2j , . . . , vpj) is a constant vector.
To keep the orthogonality of the transformation, we impose ||vj || = 1.
The first component v1 is calculated so y1 has the greatest variance subject to the constraint

that ||v1|| = 1. The second principal component v2 is calculated so that the variables y1 and y2 are
uncorrelated. Similarly are chosen y1, y2, . . . , yp, uncorrelated with each other.
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The full principal components decomposition of X can therefore be given as

Y = XV,

where V is a p× p matrix whose columns are the eigenvectors of XTX.
The principal component decomposition of X can be expressed in terms of singular value

decomposition of X. Given

X = UΣV T ,

then we have

Y = XV

= UΣV TV

= UΣ.

In practice, we initiate computations with p variables and we are left with a number of much
smaller components that collect a large percentage of the variability. For instance, we take r
variables, where r is the minimum positive integer such that:

∑r
i=1 σi

∑p
i=1 σi

> tol.

where tol is an approximation of 1 by defect.

3.3. Proper Orthogonal Decomposition Method

Consider a parameterized static computational model described by large-scale linear system of
discrete equations

A(λ)x = b. (19)

Here we can see Eq.(19) as an input-output system, where λ is the input and the solution,
x(λ) ∈ R

n, is the output.
The idea behind this method is that, given a certain input, the solution x(λ) of a system contains

the behavior of the system (Schilders and Vorst, 2008). Therefore, the set of outputs serves as a
starting-point for POD. The outputs are called snapshots and these must be given or be computed
first.

Assume the set of snapshots S and the solution x(λ∗) of Eq.(19) for a particular λ∗ is in the
subspace spanned by S. We assume that the columns of S are highly correlated, so we can apply
principal components analysis (PCA) to obtain an uncorrelated number of columns, see 3.1, and
thus to reduce the size of linear system of equations.

Consider the SVD of S

S = UΣV T (20)

and

T = V Σ−1UT . (21)
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Define

T1 =
k

∑

i=1

viσ
−1
i uTi ; T2 =

n
∑

i=k+1

viσ
−1
i uTi ,

S1 =
k

∑

i=1

uiσiv
T
i ; S2 =

n
∑

i=k+1

uiσiv
T
i .

(22)

Conditions given by Eq.(22) are a particular case of conditions given in Eq.(7). We conclude that
we get a good approximation of Eq.(19) if S2x̃ is sufficiently small (x̃ = T2(x)) or equivalently if
σi ≈ 0 for k + 1 ≤ i ≤ n.

To obtain a basis of W we have the algorithm in Table IV.

Table III. Computing a Proper Orthogonal Decomposition Basis.

In: Parameter λ’s and input-output system

Out: Base of the subspace W

Solve the full-order model to several λ’s.

For each λ, take one or more snapshots, which is the solution of Eq.(19) for some values

of t, and store such snapshots in a matrix S. Compute the SVD of S: [W,Σ, V ] = svd(S).

Find k such that σ =

∑k

i=1 σi
∑n

i=1 σi

> 0.99.

Consider only the k first columns and redefine W = W (:, [1 : k]).

Several problems have been solved by using this method (Willcox, 2002). As it has been said
before, the POD is based on Principal Components Analysis. The reader who wants to read a little
more about this can find a good source of information in (Jolliffe, 1986).

4. Interval Proper Orthogonal Decomposition (I-POD)

In this section, we present our Interval POD approach to solving large nonlinear systems of equations
in a reduced subspace. Let us first recall once again the problem that we are solving.

Given a parametric system of equations (also known as the Full Order Model):

R(x, λ) = 0, λ ∈ I (23)

where R can be either linear or nonlinear function R : R
n → R

n, that might arise from the
discretization of a set of partial differential equations and I is a fixed interval. The idea behind
POD is to solve Eq.(23) for a sequence of values λi ∈ I, i.e.,

R(x, λ1) = 0,

REC 2016 - L. Valera and M. Ceberio

359



L. Valera and M. Ceberio

R(x, λ2) = 0, (24)

...
...

R(x, λn) = 0,

where λi ∈ I, for i = 1, 2, . . . , n. The main idea of this method is based on the high correlation
between solutions for such values λi, so PCA techniques can be applied to obtain a smaller number
of columns uncorrelated with the greatest of accumulated variance.

In this work, we propose an interval version of POD. The original idea behind this new Interval
POD is that we aim to reduce the amount of work in solving the Full Order Model for many
different values of the input parameters (λ). Instead we suggest and experimented solving the Full
Order Model once on the entire interval containing all desirable values of λ.

This slight change in concept (many processes solving for many different values of λ vs. one
process solving for an entire interval instead) has consequences in our ability to solve the Full Order
Model. Now that an interval is part of the problem we are bound to use interval-computation-based
solving techniques and we found interval constraint solving techniques to be very practical to do
so.

More specifically, we are now solving:

R(x, I) = 0, (25)

which is a nonlinear system of equations with explicit uncertainty in the shape of an interval.
We called this variation of POD the Interval Proper Orthogonal Decomposition (I-POD)

method.

5. Numerical Results

In this section, we describe and report on preliminary experiments of our IPOD method on two well-
known problems: the Burgers’ equation and the Transport equation. In each of these experiment,
we aim to assess the ability of IPOD to generate snapshots that yield a reduced basis of quality
enough that the solution of the reduced-order model yields a very small error (w.r.t. FOM solution)
in comparison to what a similar process using POD achieves. Our experiments were conducted using
MATLAB R2012b (8.0.0.783) on a laptop with 1.7 GHz intel core i7 and 8GB of RAM.

5.1. Burgers’ Equation

Consider the Burgers’ equation:

∂U(x, t)

∂t
+

∂f(U(x, t))

∂x
= g(x), (26)

where U is the unknown conserved quantity (mass, density, heat etc.), f(U) = 0.5U2 and in this
example, g(x) = 0.02 exp(0.02x). The initial and boundary conditions used with the above PDE
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are: U(x; 0) ≡ 1; U(0; t) = 4, for all x ∈ [0; 100], and t > 0.

Below, in Tables IV and V, we describe the procedure to obtain the snapshots and the reduced
basis in the POD method for the Burgers’ equation. We will then compared it with I-POD.

Table IV. Computing a Proper Orthogonal Decomposition Basis.

Initialize an empty matrix where we will collect the snapshots: Snap = [], and an initial λ = 3.5.

For i= 2:100,

Solve:























∂U(x, t)

∂t

+
∂f(U(x, t))

∂x

= g(x),

g(x) = 0.02 exp(0.02x) (27)

U(x; 0) ≡ 1, for all x ∈ [0; 100],

U(0; t) = λi, for t > 0.

Collect snapshots:

From t1, t2, . . . , tn, select a subsequence4 ti1, ti2, . . . , tip.

Add new columns to the snapshot matrix Snap = [Snap U(x, ti1) U(x, ti2) . . . U(x, tip)].

Update λ: λi = λi−1 + 0.01

Apply the principal component analysis, (SVD). Snap = WΣV T
.

Select from W the principal components with the greatest accumulated variance:

σ = 0.

for k=1:n compute:

σ = σ + σk∑
n
j=1

σj

If σ > Tol, 0 < Tol < 1, break.

Select the first k columns of W and redefine it. W = W (:, [1, 2, . . . , k]).

The new W will be the reduced basis to apply the POD method.

We applied both previous procedures, POD and IPOD, to solve Eq. (26) and we obtained
the results reported in the Table VI. We observe that there is no significant difference between the
traditional method (using POD) and the method we propose (using IPOD) w.r.t. (1) the dimension
of the subspace, (2) the time it takes to solve the problem once we have identified the reduced
basis, and (3) the relative error compared with the FOM solution. The major two advantages of
our proposed method are:

− the computational time it requires to obtain the snapshots: Our approach requires 68.52% less
time than the original one and the quality of the snapshots our method generates is comparable
to that generated by POD as observed in the relative error; and

− the ability to handle uncertainty: the interval that contains λ, handled at once by IPOD,
is similar to uncertainty and is handled without problems. Further experiments will aim to

4 In the experiment done in this work, p = 5 and the subsequence was a uniform random selection.
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Table V. Computing a Proper Orthogonal Decomposition Basis Using IPOD.

Initialize a empty matrix where to collect the snapshots: Snap = [], and an initial λ = 3.5.

Solve:























∂U(x, t)

∂t

+
∂f(U(x, t))

∂x

= g(x),

g(x) = 0.02 exp(0.02x) (28)

U(x; 0) ≡ 1, for all x ∈ [0; 100],

U(0; t) = I, for t > 0.

The solution of Eq. (28) is an interval solution, i.e, for any 1 ≤ x0 ≤ 100, 0 ≤ t0 ≤ 50,

the value U(x0, t0) is an interval. The infimum of such interval is defined Ul(x0, t0) and Ur(x0, t0)

is the supremum. In that case, for all 1 ≤ x ≤ 100, 0 ≤ t ≤ 50, U(x, t) ∈ [Ul(x, t), Ur(x, t)],

see Figure 3.

For i=1:100

Compute:

U(x, t) = (Ur(x, t)− Ul(x, t))(λ− 3.5) + Ul(x, t)

Collect snapshots:

From t1, t2, . . . , tn, select a subsequence5 ti1, ti2, . . . , tip.

Add new columns to the snapshot matrix Snap = [Snap U(x, ti1) U(x, ti2) . . . U(x, tip)].

Update λ: λi = λi−1 + 0.01

Apply the principal component analysis, (SVD). Snap = WΣV T
.

Select from W the principal components with the greatest accumulated variance:

σ = 0.

for k=1:n compute:

σ = σ + σk∑
n
j=1

σj

If σ > Tol, 0 < Tol < 1, break.

Select the first k columns of W and redefine it. W = W (:, [1, 2, . . . , k]).

The new W will be the reduced basis to apply the POD method.

Table VI. Comparing POD and I-POD methods in
solving a particular example of Burgers Equation.

Method Tag 1 Tag 2 Tag 3 Tag 4

POD 300 secs 37 0.75 secs 4.85E − 4

I-POD 94.45 36 0.75 secs 5.76E − 4

Tag 1: Time computing the Reduced basis

Tag 2: Dimension of the Subspace

Tag 3: Time solving 26 using the obtained basis

Tag 4: ||ufom − urom||/||ufom||
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Figure 2. Solution of Eq.(27) for λ = 4, and some snapshots corresponding to this parameter.

Figure 3. Infimum and supremum of the solution of Eq.(28), and some snapshots corresponding to λ = 4 are shown.

demonstrate that IPOD produces meaningful results also when there are other sources of
uncertainty (beyond the interval for λ).

5.2. Transport Equation

The transport equation is a partial differential equation that models the concentration of a con-
taminant in the position x in at time t in a fluid that is flowing with velocity v in a thin straight
tube whose ross section, denoted by A is constant. Such concentration will be denoted by U(x, t).
if the function U(x, t) and its partial derivatives of order one are continuous functions of x and

5 In the experiment done in this work, p = 5 and the subsequence was a uniform random selection.
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t, and the fluid velocity v and the cross section of the tube, A, are constants, then the Transport
Equation is reduced to:

∂U

∂t
+ v

∂U

∂x
= 0

(x, t) ∈ Ω

(29)

Where Ω is a convex domain. In particular, we solve Eq.(29) with U(x, t) subject to the following
boundary and initial conditions:

U(0, t) = u(t) = − sin(2πt) + sin(πt) (30)

U(x, 0) = u(x) = sin(2πx) + sin(πx) (31)

for all t ∈ [0, 1], and x ∈ [0, 1].
Using v ∈ [0.5, 1.5] as the input parameter, we can proceed, similarly to how we did in the

Burger Equation case, and compute, first, a basis using POD method, and later, using IPOD.
Comparative values are presented in Table VII:

Table VII. Comparing POD and I-POD methods in
solving a particular example of Burgers Equation.

Method Tag 1 Tag 2 Tag 3 Tag 4

POD 0.31 sec. 12 0.06 sec. 7.97E − 5

I-POD 0.05 sec. 76 0.05 sec. 1.81E − 5

Tag 1: Time computing the Reduced basis

Tag 2: Dimension of the Subspace

Tag 3: Time solving 29 using the obtained basis

Tag 4: ||ufom − urom||/||ufom||

In this experiment, we observed that even when the dimension of the subspace is larger using the
I-POD (76) than when using POD (12), the time needed to compute the reduced basis in I-POD is
significantly less than the computing time needed using POD. Once, both basis are known, solving
the reduced problem from POD or I-POD take the same time.

In Figure 4, we can observe the plot of the solution of the transport equation for time-steps
20, 40, 60, 80. In green and red are respectively the infimum and the supremum of the interval
containing the solution.

6. Conclusions and Future Work

In this paper, we proposed and described a novel Model-Order Reduction approach that improves
the well-known Proper Orthogonal Decomposition method (POD) by using Interval analysis and
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Figure 4. Solution of Eq.(29) for time-steps 20, 40, 60, 80, enclosed in the Interval solution.

Interval Constraint Solving Techniques. This new method called Interval Proper Orthogonal Decom-
position (IPOD) was tested on two nonlinear partial differential equations problems: the Burgers’
equation and the Transport equation. We observed and reported promising performance of IPOD,
when compared to POD.

From this preliminary work, we draw the following research activities and directions. First, we
do plan to challenge IPOD on problems whose solution is highly nonlinear, e.g., the Fitz-Hugh-
Nagumo (FHN) problem. We also need to assess its relevance in handling and meaningfully solving
problems with other sources of uncertainty. Finally, when having to handle uncertainty, achieving
a relevant reduced basis is not all that needs to be modified from traditional approaches: once the
space reduced, solving techniques (currently, namely, Newton-based methods) need to be extended
to intervals. Although Interval Newton has been around for a long time (Moore and Kearfott,
2009; Hansen and Walster, 2004), Interval Newton on a reduced subspace is expected to present its
set of challenges, including in particular, the likeliness of an empty solution set.
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On the Comparison of Two Novel Interval Field Formulations for

the Representation of Spatial Uncertainty
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St.-Katelijne-Waver

Abstract: This paper concerns the comparison of two established interval field methods for the
representation of spatially varying non-determinism in an FE model: Inverse Distance Weighting
(IDW) interpolation and the Local Interval Field Decomposition (LIFD) method. The comparison
is first made from a theoretical point of view, highlighting the advantages of both techniques
as compared to each other. Next, both IDW and LIFD are applied to a dynamical model of a
U-shaped hollow tube and the resulting uncertain regions at the output side of the model are
compared qualitatively. It is shown that both techniques are complementary to each other due to
the trade-off in their ability to represent the uncertainty set at the output side of the model and
the involved computational cost.

Keywords: interval fields, uncertainty, non-deterministic modelling

1. Introduction

In the context of integrating uncertainty and variability in Finite Element (FE) models, several
advanced techniques for taking both inter- (between nominally identical parts) and intra-variability
(spatial variability within one part) into account have recently been introduced. In the framework
of possibilistic non-determinism, especially the theory of Interval Fields (IF) has been proven to
show promising results. Following this approach, variability in the input parameters of the FE
model is introduced as the superposition of a number of base vectors scaled by interval factors.
In the recent past, two techniques for the construction of interval fields have been introduced
by the authors: Inverse Distance Weighting interpolation (IDW) and the Local Interval Field
Decomposition method (LIFD). In this paper, these two established interval field methods are
compared in their ability to represent different uncertain input sets and the computational work
required. Both techniques are compared theoretically, as well as applied to a dynamical model of a
hollow U-shaped tube.

c© 2016 by authors. Printed in Germany.
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2. Interval Field Concepts

2.1. General framework

Uncertain parameters in FE models typically have a spatial character: material properties such
as density and Young’s modulus or geometric properties such as plate thickness are geometrically
oriented in space. In the context of dealing with uncertainty in simulation models, these parameters
can show variability over the spatial domain, referred to as geometric variability. In FE-models, such
a geometric parameter is discretised to the elements, leading to a set of discrete values representing
that parameter in each element of the model. According to the possibility of geometric variability,
the value in each element can vary separately, leading to different values in each element. However,
some degree of dependency will usually be present and the value in different elements can not vary
independently. Here the interval concept poses a problem. The uncertainty in each element could be
captured by an interval parameter marking the bounds of the variation, but interval parameters are
by definition incapable of incorporating the dependency present in the spatial domain. To mark the
uncertainty present in such field parameters using a possiblistic technique, the interval field concept
can be used. In its simplest form, an interval field consists of basis functions φ(r) representing the
dependency and interval coefficients αI representing the uncertainty. The explicit formulation of
the interval field is defined as:

yI(r) =
n∑
i=1

αIφi(r) (1)

with n the number of basis functions employed in the representation.

2.2. The Local Interval Field Decomposition method

2.2.1. General objective
For this interval field definition, we start from a field parameter u(r), with r the spatial coordinates.
When applied to an FE-model, such a continuous parameter is discretised to the elements of the
FE-mesh, leading to a set of discrete parameters. Within this set a certain amount of spatial
dependency is always present. The parameter value assigned to elements in close proximity to
each other will show more interdependence than elements further away. This poses a problem for
defining a plausible possibilistic field: the field can easily be made non-deterministic by defining an
interval parameter in each element marking the bounds of the uncertain parameter value in each
element, but this completely disregards any dependency present and will always overestimate the
true uncertainty within such a parameter.

In probabilistic context, the Karhunen-Loeve expansion (Vanmarcke, 1993) provides an elegant
solution to this by using the eigenvectors of the covariance matrix of the field as basis functions for
a decomposition method. The coefficients that emerge can be proven to be uncorrelated and even
independent in case of a Gaussian distribution. To define the entries of the covariance matrix, the
correlation length of the field can prove a valuable parameter, defined in Eq. 2:

COV (x(r1), x(r2)) = exp

(
‖r1 − r2‖

Lρ

)
(2)
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In possibilistic context, correlation is not defined since it is related to the joint probability
distribution functions which are not defined in this case. In the possibilistic case, we only consider
(in)dependency of parameters, a much wider term than correlation. Since correlation is undefined,
a new global dependency parameter has to be defined that is compatible with the possibilistic
approach. The parameter that will be used in the method described in this section will be the
maximum gradient of the field parameter (Imholz et al., 2015a; Imholz et al., 2016a). Intuitively, this
makes sense if we define the dependency between two parameters as the maximum difference that
can occur between the two parameters. E.g. , consider two parameters a and b, for which an intervals
aI and bI of equal size are defined. If a = b over the entire interval reach, the parameters are perfectly
dependent, whereas in the opposite case, when the parameters can take values independently, the
maximum difference is a − a. Now consider parameters a and b as instances of the same field
parameter u(r) at places in close proximity ra and rb = ra + dr. The case of perfect dependency
then corresponds to a gradient equal to zero, whereas the case of perfect independency corresponds
to a high maximum gradient, making this a valid parameter to represent the dependency.

The purpose of the interval field should be to accurately represent the true uncertain set, taking
into account the possible dependency within the field. In the case of perfect dependency, a single
discrete variable would suffise to represent the field variable in the entire domain. However, in every
other case, each element of the discretised mesh can (at least partially) determine it’s own value.
The dimensionality of the uncertainty therefore equals the total number of elements in the mesh,
regardless of the degree of dependency. To ensure the entire uncertain set is captured by the field,
the dimensionality of the interval field should be at least equal to the number of elements.

As a conclusion, the interval field will should keep the dimensionality intact, but will transform
the initial set of dependent interval parameters located in each element of the mesh, to a new set
with independent parameters, that will obey a priorly set condition on the maximum gradient in
the field.

2.2.2. Mathematical definition
The mathematical definition below follows the one explained in (Imholz et al., 2015a) for a field
parameter in a one-dimensional space. The LIFD in 1D will write the non-determistic field u(r) as
an interval field uI(r) in the form of Eq. 1 that obeys the following statements:

1. ∀r̃ ∈ Ω : Umin ≤ u(r̃) ≤ Umax

2. ∀r ∈ Ω :
∣∣∣∂u(r)∂r

∣∣∣ ≤ Gmax
3. ∀ũ(r) : u− u ≤ Dmax

The parameters Gmax, Umin, Umax and Dmax can be independently set. The first statement
demands that the absolute bounds on the field parameter Umin and Umax are never exceeded.
The second statement demands that the norm of the gradient never exceeds a preset value. This
statement accounts for the dependency in the field. The third statement puts a bound on the
difference between the maximal and minimal value of any realisation of the interval field. The
objective of the LIFD is to obey the statements using the four governing uncertainty parameters
mentioned above with an explicit interval field description with independent interval coefficients.
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The only freedom we have is the shape of the basis functions. In the 1D-case, the basis functions
have the following properties:

1. All φi are identically shaped radial basis functions.

2. A single φi is positioned at each element at location ri of the FE mesh.

3. All φi are piecewise second order polynomial functions so the first derivatives are continuous.

figure 1 illustrates the shape of a basis function and its first derivative. To comply with all
demands, the following explicit field is proposed:

Figure 1. shape of a 1D radial basis function. Beyond a radius R from the center point, the basis function equals
zero.

uI(r) = CI +

n∑
i=1

a · 1Ii · φi(r,R), (3)

with CI =
〈
C|C

〉
and 1Ii = 〈0|1〉 defined as the unity interval. The four controllable parameters

are C, C, a and R. A unique mapping between these parameters and the four global uncertainty
pararmeters is given by Eq. 4:

Umax =
a ·R
dr

+ C

Umin = C

Gmax =
a

dr

Dmax =
a ·R
dr

(4)

With dr the discretisation step of the mesh and R the effective radius of the basis functions. With
these relations, the four global uncertainty parameters can be independently set, leading to a unique
field definition as in Eq. 3.
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2.2.3. Adjustments
For the purpose of dealing with bounded physical domains and local measurement data, a few
adjustments can me made to the field mntionned above.

physical domain

dummy
points

dummy
points

Figure 2. introduction of dummy points beoynd the physical domain in which non-physical basis functions are places,
this to ensure the maximum gradient constraint is kept at the edges of the domain.

Figure 3. Adjustment of the basis function around a deterministic measurement point.

1. To ensure the maximum gradient constraint is kept over the entire domain, an adjustment is
needed close to the edge of the domain. For points that lie within a distance R from a domain
edge, the maximum constraint does not hold, because fewer basis functions have an effect in
these points, leading to a smaller interval on the gradient in these points. To counter this,
dummy points are added beyond the physical domain up to a distance R. The basis functions
placed in these points lie partly in the physical domain and will ensure that the maximum
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gradient constraint is kept over the entire physical domain. Figure 2 shows the dummy points
beyond the physical domain.

2. Sometimes, local information can be available on the field parameter in a certain element,
effectively fixing the value in that point. This limits the uncertain set to all realisations that
smoothly run through this point. The shape function attached to this point is omitted, but to
ensure the maximum gradient constraint is not violated, all base functions within a radius R
of the point have to be adjusted as well. these adjustments are illustrated in figure 3.

2.3. Inverse Distance Weighting interpolation

Inverse Distance Weighting, as proposed by the authors in (De Mulder et al., 2012), constructs
the base functions φi(r), needed for the explicit formulation of the Interval Field (1) based on the
definition a priori selected locations ri in the model geometry Ω. The selection of these locations
ri is based on the expert engineering knowledge of the analyst on where the uncertainty can be
predicted within accurate bounds. The base functions are constructed following an inverse distance
weighting, where it is assumed that the weight of an interval scalar αIi , defined at ri decreases with
the distance r from that respective location:

φi(r) =
wi(r)∑n
j=1wj(r)

(5)

,with n the number of base functions present in the interval field formulation. The weights wi(r) are
calculated as the inverse of d(ri, r) to the power of p ∈ R>0. d(ri, r) is a distance measure between
the location ri where the interval is defined and the rest of the model r. In the specific case of FE
models, the concept of Euclidean distance is insufficient, as this yields non-physical paths between
two points in the interpolation (De Mulder et al., 2012). It is therefore proposed to use a shortest
path approach to calculate these distances.

An illustration of this concept is given in figure 4. The top graph of this figure shows all vertex
realisations when three local intervals αI1, αI2 and αI3 are respectively defined at element 2, 4 and
8 in a 10 element 1D beam geometry, with αI1 = [1.78; 1.85], αI2 = [1.40; 1.75] and αI3 = [1.3; 2.40].
The middle graph shows the calculated weight functions wi(r) for the respective interval scalars
and p = 2. Finally, the bottom graph shows the base functions φi(r) which are calculated based on
the weighting functions for these locally defined interval scalars.

As can be noted, the locally defined intervals remain perfectly decoupled at the locations where
they are defined, whereas the rest of the model can be seen as a weighted sum of their respective
influences.
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Figure 4. Illustration of the employed interpolation scheme. Top: vertex realisations of the resulting interval field, with
the vertical lines indicating the locations of the interval scalars. Middle: Weight functions. Bottom: Base functions of
the interval field, computed following Eq. 5.

3. Case Study

3.1. Object description and uncertainty definition

Both interval field formulations are applied to the dynamic analysis of a u-shaped tube. This tube is
produced following a cold-forming process and hence the largest uncertainty is located in the bent
part. Therefore, only this part is considered as uncertain in the following analysis. An illustration
of this model is shown in figure 5. An FE model of this geometry is constructed using 75 beam
elements and the model is solved for the first ten non-rigid eigenfrequencies.

Figure 5. Illustration of the geometry of the u-shaped cold formed beam under consideration.
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We assume the E-modulus of the tube is subject to uncertainty, ultimately limited to ±55% of
the nominal value. The uncertain part of the tube is limited to the curved part, the straight ends
are assumed to be deterministic. In the curved part, the two methods mentioned above are used to
create an interval field for the 21 elements located there.

1. An interval field is defined by imposing that the interval scalars at elements 33 and 43 are both
defined as [93.12 · 1009 Pa; 320.8 · 1009 Pa] and is constructed following the IDW technique.
Only the uncertainty between element 28 and 48 is regarded in the analysis. C0 continuity in
the realisations of Young’s Modulus at the border between the certain and uncertain region is
guaranteed by imposing infinitely thin intervals at elements 28 and 48. Propagation of the IDW
interval field is performed following the vertex method (Dong and Shah, 1987). A maximum
gradient of 5 · 1005 MPa/m is thus obtained in the realisations of the IDW interval field. The
interval field and its gradients for this model is shown in figure 6.

2. For the LIFD, an R-value equal to 0.3m (4 element-lengths) and a-value equal to 40 · 103

MPa provide limits that are similar to the IDW case. In the endpoints of the curved part,
measurement points are introduced to fix the field there at the nominal value. This leads to
an interval field description with 21 terms, one interval parameter and corresponding shape
function in each element. Some realisations are given in figure 7. To propagate this field, a
response surface is created using coefficient fields. Basically, this is a polynomial model that
takes into account the dependency between E-moduli in adjacent elements by assuming the
coefficients of the polynomial are continuous functions of the spatial coordinate r as well (Imholz
et al., 2016a).

Obviously, the analysis using IDW is much more straightforward to perform and less time-
consuming, as it only uses two uncertain independent variables. The LIFD attempts to capture the
entire set of realisations that obey the maximum gradient constraint using 21 uncertain independent
variables, at the cost of increased computational work. The uncertain set of the IDW is a subset of
the uncertain set of the LIFD, which is realised by keeping the maximum derivative and maximum
deviation equal between both approaches. As a result, the uncertain output set of eigenfrequencies
obtained with IDW should be a subset of the uncertain output set obtained with LIFD.

3.2. resulting uncertainty on the eigenfrequencies

In both cases, the uncertain domain at the output is a region within a ten-dimensional domain
containing the 10 eigenfrequencies. To allow for graphical verification, this domain is projected
on some two-dimensional subdomains considering only two eigenfrequencies. Figure 8 shows the
result of the vertex method computation for the IDW interval field. ωm in this figure denotes
one realisation of the input interval field, while Cm indicates the convex hull of the uncertainty
region spanned by these realisations, as proposed by the authors in (Faes et al., 2016a; Faes et al.,
2016b). Two vertex realisations ([E;E] and [E;E]) of the IDW interval field are coincident due
to the symmetry of both the IWD interval field and the model geometry, leading to a triangular
uncertainty region in 10 dimensions.
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Figure 6. Top: Vertex realisations of the interval field obtained by regarding the spatial uncertainty between elements
28 and 48, obtained by interpolating [93.12 · 1009; 320.8 · 1009] and [93.12 · 1009; 320.8 · 1009] at elements 33 and 43.
Bottom: gradients of the vertex realisations of the interval field.
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Figure 7. Some configurations generated by using the LIFD method.

For the LIFD, the vertex method is not applicable as the relatively large amount of variables
(= 21) already amounts to over two million vertex points. Instead, a tracking algorithm was
introduced by the authors in (Imholz et al., 2016b) that creates the 2D-projections of uncertain
regions originating from monotonous problems directly. Starting in the minimum vertex point,
where all inputs are at their minimal value, The upper bound curve is found by setting steps along

a path that attempts to maximize the quantity
∂ωy

∂Ei
/
∂ωy

∂Ei
, whereas the lower bound curve is found
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Figure 8. Two dimensional subdomains of the ten dimensional output space, obtained by performing the vertex
method on the IDW interval field.

by setting steps along a path that attempts to minimize it. This approach is especially suited for
identifying ’shuttle’-shaped uncertain regions, which are common for monotonous I/O-relations.

3.3. Observations

Figure 9 again shows the uncertain regions obtained from the IDW case, but the figure is expanded
with the results of the LIFD-analysis. In this figure, the shuttle shapes can be seen very clearly. Our
initial requirement that the IDW region should be a subset of the LIFD-region seems to be met.
The uncertain region obtained from the LIFD is clearly much ’wider’, indicating a less pronounced
dependency between eigenfrequencies in the mid-vertex region (= half-way between the corner
points). It is interesting to take a look at which realisations are responsible for this observation. If
we look at the plot concerning ω3 and ω5, we are specifically interested in the point P, located on
the upper bound curve. Figure 10 shows the input realisation that corresponds to this point. From
the shape, we can see that IDW using only 2 uncertain parameters at the locations mentioned does
not include this configuration in its uncertain set, and therefore it is not propagated to the output.
Putting in an extra uncertain parameter in the middle in-between the two current parameters would
solve this problem. However, the possibility remains that critical configurations in other frequency
pairs remain neglected. Because LIFD takes into account all possible configurations bounded by
the maximum gradient constraint, the LIFD-approach does not suffer from this problem. However,
the increased dimensionality brings along problems of its own, leading to increased computational
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Figure 9. Two dimensional subdomains of the ten dimensional output space, both for the IDW and LIFD method.
Upper left: frequency 3 and 5, upper right: frequency 2 and 7, lower left: frequency 2 and 9, lower right: frequency 7
and 10. UBC = upper bound curve, LBC = lower bound curve.
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Figure 10. Realisation corresponding to the point P indicated in Figure 9.

work. The vertex method used by IDW only requires four FE-model evaluations (Actually only
three, because two vertices are equal due to symmetry of the tube). The response surface used by
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LIFD was build upon a sample set of 50 samples, after which the remaining work to compute the
uncertain regions was neglectible. The efficient use of the coefficient functions prevents us from
increasing the problem dimension to infeasible heights.

4. Conclusions

The importance of Uncertainty Quantification for the purpose of creating relaible designs cannot
be stretched enough. This paper elaborated and compared two types of possiblistic uncertainty
modelling using the interval as basic tool to represent non-deterministic parameters. Essentially, the
concept of interval fields extend the use of intervals to geometric parameters by taking into acount
possible spatial dependence within such a field. The two concept described here both approach the
problem in a different manner: the IDW-method requires a preliminary choice of the locations where
independent interval parameters will be placed in space, and then interpolates to all other points in
the field. The LIFD starts from a global uncertainty definition by setting bounds on the maximum
derivative and converts this to an interval field that puts an independent interval parameter in each
point of the FE-mesh the field is defined on, thereby ensuring the entire uncertain set is captured at
the cost of high dimensionality. As a final conclusion, one can say that IDW works well in problems
were the sensitive points in the spatial domain are known beforehand and the number of output
parameters is limited, since the sensitive points may vary for each output parameter. When multiple
output parameters are considered, the LIFD provides a more robust approach to find the complete
uncertain output set for a certain minimal gradient constraint.
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Abstract: The load flow is the most basic tool for investigating the requirements of a power system
and understanding its performance with fixed transmission line parameters and for specified sets
of load and generation values. The common formulation of the power flow problem has all the
input data specified at a specific time and conditions with fixed values. However, these data are
approximate and do not take the measurement errors in transmission line and variation in load
demand into consideration. When the input conditions are uncertain, a reliable load flow solution
is needed that incorporates the effect of data uncertainty. This paper addresses the problem of
uncertainties in the input parameters by specifying them as compact intervals, taking into con-
sideration the errors in modeling and measurement of transmission line parameters and also the
continuous influence of load measurement errors and fluctuation in the load demand. The load
flow or power flow equations are modeled as a set of nonlinear algebraic equations. These systems
of equations are first linearized using Taylor Series expansion and the solution is obtained by the
Krawczyk’s method of interval arithmetic. The proposed methodology is implemented in MATLAB
environment using the INTLAB toolbox. The method is applied to 3 bus, 14 bus, 30 bus and 57
bus IEEE test systems. The results obtained are bounded and thus help in providing an insight
to the operation and future expansion of the power system. These results are also compared with
those obtained with another iterative method for solving interval linear equation systems.

Keywords: interval mathematics, load flow analysis, uncertain data, Newton Raphson method,
Intlab toolbox, Krawczyk’s method

1. Introduction

The optimal load flow problem has had a long history in its development for more than 25 years.
A generalized formulation of the economic dispatch problem including voltage and other operating
constraints was introduced and was later named the optimal power or load flow problem (OPF)
(Abdel-Hady and Abdel-Aal Hassan, 2012). Power flow studies are the backbone of power system
analysis and design. They are necessary in planning and designing the future expansion of power
systems as well as in determining the best operation of existing systems.

Modern power systems are operating under highly stressed and unpredictable conditions because
of many issues like market-oriented reforms, consumer utility, measurement errors, use of renewable
generation and electric vehicles, etc. The changes resulting from these uncertain factors lead to
higher requirements for the reliability of power grids. In this situation, conventional methodologies
cannot be applied, so robust and reliable methods become very essential.

c© 2016 by authors. Printed in Germany.
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The load flow problem in an electric power system is concerned with solving a set of static
nonlinear equations describing the electric network performance. The problem is formulated on
the basis of Kirchhoff’s laws in terms of active and reactive power injections and voltages at each
node in the system. Load flow studies or power flow studies is the basic tool for investigating the
requirements of power system, viz., generation should be sufficient to meet demand and losses,
bus voltages should be in specified range and reactive powers limits of generator buses should be
within limits (Grainger and Stevenson, 1994). This information is essential for planning for future
expansion such as adding new generator sites to meet increased load demand, operation of the
current state of the system, exchange of power between utilities, etc.

The principal information obtained from a power flow study is the magnitude and phase angle
of the voltage at each bus and the real and reactive power flow in each line (Hadi Saadat, 2002). As
four quantities are involved, four independent constraints are required. In the load flow problem,
the buses in the power grid are generally divided into three categories, i.e., slack bus, load bus PQ,
and regulated or generator bus PV . A slack bus which is taken as reference is specified with both
bus voltage magnitude and phase angle. A PQ bus which can typically be a substation or a power
plant with fixed real and reactive power is specified with both active and reactive power injections.
A PV bus which is usually a substation with adjustable reactive compensation devices or a power
plant with reactive reserves is specified with real power injection and bus voltage magnitude. In
reality, a power plant that has adequate capacity and is responsible for frequency control is often
selected as a slack bus (Almeida et. al, 1994).

The mathematical formulation of the load flow problem results in a system of algebraic nonlinear
equations where the input data are considered to be fixed for all time at all system conditions.
However, in reality the models used in power flow analysis are only approximations. The network
parameters are usually approximated even though the uncertainties may arise from variances in the
model parameters of transmission system elements, such as resistance, reactance and/or capacitance
values due to environmental conditions and measurement errors. Also, the specified variables, like
real power at PV buses, are inaccurate as they may have measurement errors (Wang and Alvarado,
1994). Further, the demands can vary in a fast and disordered way. Moreover, the uncertainty
in the input data can be enlarged due to both rounding and truncating processes that occur in
numerical computations (Barboza, Dimuro and Reiser, 2004). Therefore, the final results obtained
by conventional methods are wrongly implemented in the system. So, a more reliable power flow
algorithm is required which allows the analysts to incorporate both the estimate in data and
solution tolerance, i.e., the uncertainty in input parameters and the effect of propagation of data
inaccuracies, thus obtaining a range of values for each output quantity (Vaccaro et.al, 2009; Vaccaro
et. al, 2013).

Researchers and power engineers have recognized the importance of these uncertainties. Wang
and Alvarado are the pioneers in this field where the authors have solved the interval nonlinear
equations using the Newton operator and the Gauss Seidel method in (Wang and Alvarado, 1994).
Later, in (Barboza, Dimuro and Reiser, 2004) load uncertainty has been dealt by solving the
nonlinear equations using Krawczyk’s method (Moore, 1966). Recently, many authors have used
optimization techniques to address the existence of uncertainty in power flow problem (Dimitrovski
and Tomsovic, 2004; Vaccaro et.al, 2009; Vaccaro et. al, 2010; Vaccaro et. al, 2013).
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In order to overcome the aforesaid limitations and also control these numerical errors, we propose
to apply the technique of interval arithmetic in the Newton-Raphson approach of power flow
analysis. In this paper, we develop a methodology by taking into account the various uncertainties.
Here, the input parameters are represented as intervals taking into consideration

− the errors in modeling and measurement of transmission line parameters.

− influence of the load measurement errors and fluctuation in the demand.

The nonlinear system is first linearized by the Newton Raphson method and then Krawczyk’s
method of interval mathematics is applied to solve the system of linearized equations. The im-
plementation is performed in MATLAB environment, using the INTLAB toolbox developed by S.
Rump (Rump, 1999). The proposed methodology is tested on 3 bus, 14 bus, 30 bus and 57 bus
IEEE test systems.

The rest of the paper is organized as follows: Section II reviews some basic concepts related to
interval arithmetic and interval systems. In Section III, we give the main characteristics of load
flow problem. In Section IV we describe the interval arithmetic applied to the load flow problem
with the proposed approach. In Section V, we give the results on the test problems followed by
conclusion section.

2. Interval Arithmetic

Interval arithmetic, interval mathematics, interval analysis, or interval computation, is a method
developed by mathematicians since the 1950s and 1960s as an approach to putting bounds on
rounding errors and measurement errors in mathematical computation, thus developing numerical
methods that yield reliable results. It is an arithmetic developed by R. E. Moore that is defined
on sets of intervals instead on sets of real numbers (Moore, 1966). It combines interval arithmetic
with analytic estimation techniques to compute the sharpest possible interval solution set which
completely contains the true solution set. The power of interval arithmetic lies in its implementation
on computers. It solves problems which are unsolvable by non-interval methods and has been used
recently for global optimization, solving ordinary differential equations, linear systems, optimiza-
tion, etc. Interval arithmetic is a logical extension of standard arithmetic that uses operators defined
over real intervals.

Following the notations given by (Moore, 1966) and (Ralhan and Ray, 2013), let,

x = [a, b]|a ≤ b, a, b ∈ R (1)

be a real interval where a is the infimum (lower endpoint) and b is the supremum (upper endpoint)
of x. The width of interval is defined as w(x)= a − b. The midpoint of the interval is defined
as m(x)= (a + b)/2. For a n dimensional interval vector x∗ = [x1,x2, ...,xn], the midpoint of
interval vector x∗ is given by m(x∗)=[m(x1),m(x2), ...,m(xn)]. The width of interval vector is
w(x∗)=[w(x1), w(x2), ..., w(xn)]. A degenerate interval has both its lower and upper endpoints
same.
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Let x= [a, b] and y= [c, d] be two intervals. Let +, −, ∗ and / denote the operation of addition,
subtraction, multiplication and division, respectively. If ⊗ denotes any of these operations for the
arithmetic of real numbers x and y, then the corresponding operation for arithmetic of interval
numbers x and y is,

x⊗ y=[x⊗ y | x ∈ x, y ∈ y]

The above definition is equivalent to the following rules:

x + y = [a+ c, b+ d]

x− y = [a− d, b− c]
x ∗ y = [min(ac, bc, ad, bd),max(ac, bc, ad, bd)]

x/y = [x ∗ [1/d, 1/c]], 0 /∈ y

.
An interval function F (x1,x2, ...,xn) of intervals x1,x2, ...,xn is an interval valued function

of one or more variables. F (x1,x2, ...,xn) is said to be an interval extension of a real function
f(x1, x2, ..., xn) if f(x1, x2, ..., xn) ∈ F(x1,x2, ...,xn), whenever xi ⊂ xi for all i = 1, 2, ..., n. F is
said to be inclusion monotonic if,

xi ⊂ yi =⇒ F (x1,x2, ...,xn) ⊂ F (y1,y2, ...,yn) (2)

.
Also, F (x1,x2, ...,xn) contains the range of f(x1, x2, ..., xn). Interval functions F (x) can be

constructed in any programming language in which interval arithmetic is implemented, viz., C/C++
and Fortran 90/95, Maple, MATLAB, etc. However, the computations are slow and costly. Com-
puting an interval bound carries a cost of 2 to 4 times as much effort as evaluating f(x) (Moore,
1966; Hansen, 1992). INTLAB implemented with MATLAB enables basic interval operations to be
performed on real and complex interval scalars, vectors and matrices.

3. Load Flow Review

The power flow equations (Hadi Saadat, 2002; Chen et. al, 2008) to describe an n bus system
shown in Figure 1, are formulated using the bus admittance matrix Y as:

Ii =
n∑
j=1

YijVj (3)

where Ii is the current entering in bus i and Yij is the admittance between the ith and jth buses.
These equations are established using the bus analysis which results in node voltages as independent
variables.
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Figure 1. A Typical bus of Power system.

In polar form Eq.(3) is expressed as,

Ii =

n
∑

j=1

|Yij |∠θij |Vj |δj (4)

where, |Yij | is the magnitude and ∠θij is the angle of the admittance |Yij | and |Vj | is the magnitude
and ∠δj is the phase angle of the voltage. The complex power at bus i is,

Pi − jQi = V ∗
i Ii (5)

Pi is the net real power injection and Qi is the net reactive power injection at bus i
Again, from Eqs.(4) and (5),

Pi − jQi = |Vi|∠− δi

n
∑

j=1

|Yij ||Vj |∠θij + δj (6)

Thus,

Pi =
n
∑

j=1

|Vi||Vj ||Yij | cos(θij − δi + δj) (7)

Qi =
n
∑

j=1

|Vi||Vj ||Yij | sin(θij − δi + δj) (8)

The general practice in power flow studies is to identify the three types of buses in the network.
At each bus i, out of the four quantities δi, |Vi|, Pi, and Qi, two are specified and the remaining two
are determined. Specified quantities are chosen according to the criteria explained in the following
subsections.
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3.1. Load Buses

At each non generator bus i, called a load bus or a PQ bus, both Pgi andQgi are zero and Pdi andQdi
drawn from the system by the load are known from historical record, load forecast, or measurement,
where the suffixes g and d denote generator and demand. Therefore, the two unknown quantities
those to be determined are δi and |Vi|. Initially δi and |Vi| are set as 0.0 and 1.0, respectively.

3.2. Voltage Controlled Buses

Any bus of the system at which the voltage magnitude is kept at a constant is said to be a voltage-
controlled bus. A generator bus is usually called a voltage-controlled or a PV bus. A prime mover
of any generator can control the amount of generated megawatts (MW), whereas generator voltage
magnitude can be controlled by generators excitation system. Therefore, at each generator bus i
both |Vi| and Pgi may be properly specified. The two unknown quantities that must be determined
are δi and Qi. Initially δi is taken as 0.0.

3.3. Slack Bus

The voltage angle of a slack bus serves as a reference for the angles of all other bus voltages. Thus,
the usual practice is to set δi to zero degree. Voltage magnitude of the slack bus |Vi| is also specified.
Therefore, the two unknown quantities Pi and Qi must be determined during the load flow analysis.

3.4. Conventional Load Flow Problem Formulation

The set of equations given by Eq.(7) constitute a set of nonlinear algebraic equations as a function
of voltage magnitude in per unit and phase angle in radians. Generalizing,

P(|V|, δ) = Ps

Q(|V|, δ) = Qs (9)

If (Vk, δk) is an initial estimate and ∆V and ∆δ are small deviations in voltage magnitudes and
angles respectively, except the slack bus then,

P(Vk + ∆V, δk + ∆δ) = Ps

Q(Vk + ∆V, δk + ∆δ) = Qs (10)

Expanding Eq.(10) in Taylor series about an initial estimate (Vk, δk) and neglecting higher order
terms, we obtain,

PVk,δk + ∆V
∂PVk,δk

∂V
+ ∆δ

∂PVk,δk

∂δ
−Ps = 0

QVk,δk
+ ∆V

∂QVk,δk

∂V
+ ∆δ

∂QVk,δk

∂δ
−Qs = 0 (11)
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Hence, [
Ps −PVk,δk
Qs −QVk,δk

]
=


∂PVk,δk

∂δ

∂PVk,δk
∂V

∂QVk,δk
∂δ

∂QVk,δk
∂V

[ ∆δ
∆|V|

]
(12)

Elements of the Jacobian matrix are the partial derivatives of Eqs.(7) and (8) for i = 2, ..., n,
evaluated at (Vk, δk) and bus 1 is assumed to be the slack bus. Using the initial estimates given in
Sections 3.1, 3.2 and 3.3, PVk,δk and QVk,δk are calculated using Eqs.(7) and (8) respectively for
each bus. Writing in compact form,[

∆P
∆Q

]
=

[
J1 J2

J3 J4

] [
∆δ

∆|V|

]
(13)

Therefore, [
∆δ

∆|V|

]
= J−1

[
∆P
∆Q

]
(14)

Expressing Eq.(14) as,
Jx = b (15)

where,

x =

[
∆δ

∆|V|

]
(16)

J =

[
J1 J2

J3 J4

]
(17)

and

b =

[
∆P
∆Q

]
(18)

The above equations have inherent assumptions which include the factors, such as the three
phase system is in balanced, steady-state condition so that the frequency and voltage are constant,
the real and reactive power demands are known and specified precisely, the real power injection
and voltage magnitude of generators are fixed, and the network topology and impedances are
known precisely. But these are not valid, at least in true sense. The uncertainties may be induced
by modeling errors due to the approximations in the values of the resistances, reactances and
shunts in the models which are used to represent transmission lines and transformers. The practical
power systems are very large with tens of thousands of buses. As a consequence, the probability of
data errors increases dramatically with system size. Therefore, we take the data uncertainty into
consideration by characterizing the load and transmission line parameters as a range of real values
or a real interval instead of crisp values.
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4. Load Flow Solution using Interval Method

As the uncertainties in the data could affect the deterministic power flow solution to a considerable
extent, reliable solution algorithms that incorporate the effect of data uncertainties into the load
flow analysis are therefore required. In this way, the uncertainty propagation effect is explicitly
considered and the bounded values for power flow studies can be assessed. Thus, the voltages, angles
and powers are obtained as intervals that include all computational errors and all the possible results
obtained by computations with real numbers. The known real and reactive power injections Pi, Qi,
as well as other input line parameters are modeled as intervals that are estimated in the beginning
of the process. The magnitude and angle of voltages are unknown intervals to be determined
for all buses except the slack bus. In order to reach the solution, we use the Krawczyk method
which is an iterative method to solve interval linear system of equations (Moore, Baker and Cloud,
2008; Hansen, 1992).

4.1. Krawczyk Method

The power flow equations (Eqs.(13), (14), and (15)) have been obtained after linearization using
Taylor series expansion method. Since we have taken the uncertainty in the transmission line
parameters, i.e, resistances and reactances, the Jacobian J is an interval matrix. Also, the variations
in power lead to interval vectors (which are actually nonlinear in nature but are linearized). By
using the Krawczyk method, along with interval arithmetic we can obtain the solution of the finite
system of linear equations. Consider a system of finite system of linear equations represented as,

Jx = b (19)

i, e., x = J−1b (20)

Let Y be an approximate inverse of J, i.e.,

Y ' J−1 (21)

Multiplying both sides of Eq.(19) by Y. We have,

YJx = Yb (22)

From Eq.(20) and Eq.(22), we get,

[I−YJ]x = J−1b−Yb (23)

Let us consider,
E = I−YJ (24)

Therefore, Eq.(23) can be written as,
Ex = x−Yb (25)

or,
x = Yb + Ex (26)
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The norm of an interval matrix say A is given by,

||A|| = maxi
∑
j

|Aij | (27)

Since E is an interval matrix ||E|| = maxi
∑

j |Eij |. So if ||E|| ≤ 1 using Eq.(27), then the sequence,

x(k+1) = Yb + Ex(k) ∩ x(k); k = 0, 1, 2, ... (28)

x
(0)
i = [−1, 1]||Yb||/(1− ||E||); i = 0, 1, ..., n

is a nested sequence of interval vectors containing the unique solution to Eq.(19) for every interval
matrix J and every interval vector b. From Eq.(28) the new estimates for the bus voltage angle
and magnitude are respectively obtained as,

δ(k+1) = δ(k) + ∆δ(k) (29)

|V (k+1)| = |V (k)|+ ∆|V (k)| (30)

Since nonlinearities in the power system can be said to be encompassed by intervals in the linearized
system (Kearfott, 1991; Hansen, 1992), Eqs.(29) and (30) give us a bounded and converging solution
for the non linear power flow equations.

5. Results

In this section we test the performance of the proposed method. For this we have carried out the
tests on these standard systems, namely IEEE 3 bus, 14 bus, 30 bus and 57 bus test power systems
from the Archive, by conventional load flow and interval load flow methods. We specify the loads
and generation in Mega Watt (MW) and Mega Volt Ampere Reactive (MVAR), respectively, bus
voltages in per unit, and their angles in degrees. Loads and generations are converted into per unit
quantities on the base Mega Volt Ampere (MVA) selected. Three types of tests are performed on
all the systems

1. Available data has been taken as fixed data without any uncertainty

2. Measurement error of 2% in the transmission line parameters was considered.

3. A 10% variation in active and reactive powers of load and generator were carried out.

The test cases considered are as given in the subsequent subsections. In this paper, we implement
the methods in MATLAB environment using the INTLAB toolbox (Rump, 1999).

5.1. IEEE 3 bus system

The 3 bus network shown in Figure 2 consists of one load bus (PQ bus, bus 2), one generator bus
(PV bus, bus 3) and a slack bus (reference bus, bus 1) and has three circuits whose parameters,
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Figure 2. 3 Bus Test Case.

Table I. Line data for 3 bus test case.

Bus Bus Rp.u. Xp.u. C(MV ar) Tr.TapSet.

1 2 0.02 0.04 0 1

1 3 0.01 0.03 0 1

2 3 0.0125 0.025 0 1

i.e., resistance, reactance and capacitance are shown in Table I. Table II shows power flow data for
the test case. Initially, we consider that the power at load bus is accurate and measurement errors
are equal to zero.

With conventional Newton Raphson method we obtain the results as shown in Table III without
considering any uncertainty in the input data. In the table we show the magnitude and angle of
voltages at all system buses (|V | is magnitude of bus voltage, δ is the angle in degrees), PD and
QD, PG and QG are the active and reactive powers of load, generator and slack buses.

Then, we consider the existence of uncertainties in the values of the input data as mentioned
above and Table IV and Table V show the results of the simulations performed using interval
arithmetic. The active power at the slack bus for 2% variation in power load measurements is
[1.4736, 2.8930] using intervals and by conventional method, it is 2.1482 p.u. which is inclusive in
that range. Similarly, the reactive power at slack bus by conventional method is 1.4085 and interval
value is [1.0008, 1.8217].

Table II. Bus data for 3 bus test case.

Bus V (p.u.) Angle (deg) PD QD PG QG Qmin Qmax MVar

1 1.05 0 0 0 0 0 0 0 0

2 1.00 0 −4 −2.5 0 0 0 0 0

3 1.04 0 0 0 2 0 0 0 0
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Table III. Load Flow Solution for 3 bus system with conven-
tional Newton Raphson method.

Bus |V | δ(deg.) PD QD PG QG

1 1.05 0 0 0 2.1842 1.4085

2 0.97168 -0.04706 -4 -2.5 0 0

3 1.04 0.008705 0 0 2 1.4617

Table IV. Load Flow Solution for 3 bus Interval system with
variation in load power.

Bus |V | δ(deg.) QG

1 [1.0500, 1.0501] [0.0000, 0.0000] [1.0008, 1.8217]

2 [0.9637, 0.9797] [-3.5040, -1.8889] [0.0000, 0.0000]

3 [1.0400, 1.0401] [-1.0924, 0.0948] [0.1240, 2.7880]

5.2. IEEE 14 bus system

The 14 bus IEEE test case shown in Figure 3 has been analyzed in the same way. Table VI shows the
results with the conventional Newton Raphson method. Table VII and Table VIII show the results
of the simulations performed using Interval mathematics considering the existence of uncertainties
in the values of the input data. The active power at the slack bus for 2% variation in power load
measurements is [1.9931, 2.6583] using intervals and the interval value of reactive power at slack
bus is [-0.2301, -0.0757].

5.3. IEEE 30 bus system

Next we consider 30 bus IEEE test case. Table IX and Table X show the results of the simulations
performed using Interval mathematics considering the existence of uncertainties in the values of
the input data. The active power at the slack bus for 2% variation in power load measurements

Table V. Load Flow Solution for 3 bus Interval system with
variation in line parameters and load power.

Bus |V | δ(deg.) QG

1 [1.0500, 1.0501] [0.0000, 0.0000] [1.0010, 1.8219]

2 [0.9637, 0.9797] [-3.5024, -1.8880] [0.0000, 0.0000]

3 [1.0400, 1.0401] [-1.0918, 0.0949] [0.1237, 2.7877]
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Table VI. Load Flow Solution for 14 bus system with conventional
Newton Raphson method.

Busno. V (p.u.) δ(deg.) PD QD PG QG

1 1.060 0.000 0.000 0.000 2.746 −0.238

2 1.045 −6.149 0.217 0.127 0.004 0.628

3 1.010 −13.781 0.942 0.190 0.000 0.272

4 1.014 −11.178 0.478 −0.039 0.000 0.000

5 1.017 −9.603 0.076 0.016 0.000 0.000

6 1.070 −15.283 0.112 0.075 0.000 0.216

7 1.050 −14.159 0.000 0.000 0.000 0.000

8 1.090 −14.159 0.000 0.000 0.000 0.246

9 1.034 −15.732 0.295 0.166 0.000 0.000

10 1.032 −15.935 0.090 0.058 0.000 0.000

11 1.047 −15.727 0.035 0.018 0.000 0.000

12 1.054 −16.136 0.061 0.016 0.000 0.000

13 1.047 −16.178 0.135 0.058 0.000 0.000

14 1.021 −16.952 0.149 0.050 0.000 0.000

Table VII. Load Flow Solution for 14 bus Interval system with
variation in load power.

Bus |V | δ(deg.) QG

1 [1.0600, 1.0601] [0.0000, 0.0000] [-0.2381, -0.0757]

2 [1.0449, 1.0450] [-6.7794, -4.1951] [-0.0671, 1.0016]

3 [1.0100, 1.0101] [-14.3743, -11.1098] [-0.1268, 0.6576]

4 [1.0110, 1.0176] [-11.5647, -8.9499] [0.0000, 0.0000]

5 [1.0143, 1.0202] [-9.8895, -7.6405] [0.0000, 0.0000]

6 [1.0700, 1.0701] [-16.1462, -12.6894] [-0.7583, 1.1850]

7 [1.0472, 1.0535] [-14.8825, -11.6226] [0.0000, 0.0000]

8 [1.0900, 1.0901] [-14.8825, -11.6226] [0.2152, 0.2748]

9 [1.0288, 1.0386] [-16.6281, -13.0375] [0.0000, 0.0000]

10 [1.0277, 1.0375] [-16.8653, -13.2181] [0.0000, 0.0000]

11 [1.0446, 1.0504] [-16.6346, -13.0615] [0.0000, 0.0000]

12 [1.0517, 1.0553] [-17.1042, -13.4328] [0.0000, 0.0000]

13 [1.0445, 1.0497] [-17.1593, -13.4572] [0.0000, 0.0000]

14 [1.0155, 1.0272] [-18.0196, -14.1104] [0.0000, 0.0000]
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Figure 3. 14 Bus Test System.

Table VIII. Load Flow Solution for 14 bus Interval system with
variation in line parameters and load power.

Bus |V | δ(deg.) QG

1 [1.0600, 1.0601] [0.0000, 0.0000] [-0.2386, -0.0762]

2 [1.0449, 1.0450] [-6.7826, -4.1989] [-0.0669, 1.0019]

3 [1.0100, 1.0101] [-14.3765, -11.1134] [-0.1270, 0.6575]

4 [1.0110, 1.0176] [-11.5672, -8.9534] [0.0000, 0.0000]

5 [1.0143, 1.0202] [-9.8922, -7.6440] [0.0000, 0.0000]

6 [1.0700, 1.0701] [-16.1464, -12.6910] [-0.7584, 1.1849]

7 [1.0472, 1.0535] [-14.8835, -11.6249] [0.0000, 0.0000]

8 [1.0900, 1.0901] [-14.8835, -11.6249] [0.2152, 0.2749]

9 [1.0288, 1.0387] [-16.6284, -13.0392] [0.0000, 0.0000]

10 [1.0277, 1.0375] [-16.8654, -13.2197] [0.0000, 0.0000]

11 [1.0446, 1.0504] [-16.6347, -13.0630] [0.0000, 0.0000]

12 [1.0517, 1.0553] [-17.1040, -13.4341] [0.0000, 0.0000]

13 [1.0445, 1.0497] [-17.1591, -13.4585] [0.0000, 0.0000]

14 [1.0155, 1.0272] [-18.0192, -14.1115] [0.0000, 0.0000]

is [2.2425, 2.9780] using intervals which is inclusive in that range. Similarly, the reactive power at
slack bus has interval value is [-0.2544,-0.0803] .

5.4. IEEE 57 bus system

Finally we consider 57 bus IEEE test case. In this case a measurement error of 2% in the transmission
line parameters was assumed. Tables XI and XII show the results of the simulations performed using
interval arithmetic considering the existence of uncertainties in the values of the input data. Next
a 20% variation in active and reactive powers of load and generator were assumed. This was done
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Table IX. Load Flow Solution for 30 bus Interval system with variation
in load power.

Bus |V | δ(deg.) QG

1 [ 1.0600, 1.0601] [0.0000, 0.0000] [ -0.2544, -0.0803]

2 [ 1.0429, 1.0430] [ -6.3511, -4.6426] [ -0.0873, 1.0649]

3 [ 1.0186, 1.0244] [ -9.0298, -6.9783] [0.0000,0.0000]

4 [ 1.0097, 1.0160] [ -10.9077, -8.4153] [0.0000, 0.0000]

5 [ 1.0100, 1.0101] [ -16.1915, -12.5710] [ -0.2099, 0.9167]

6 [ 1.0096, 1.0145] [ -12.8548, -9.9412] [ 0.0000, 0.0000]

7 [ 1.0011, 1.0058] [ -14.8170, -11.4820] [0.0000,0.0000]

8 [ 1.0100, 1.0101] [ -13.6719, -10.5588] [ -0.6206, 1.2306]

9 [ 1.0464, 1.0556] [ -16.2159, -12.6518] [ 0.0000, 0.0000]

10 [ 1.0365, 1.0522] [ -17.9750, -14.0733] [ 0.0000, 0.0000]

11 [ 1.0820, 1.0821] [ -16.2159, -12.6518] [ 0.1267, 0.1953]

12 [ 1.0530, 1.0617] [ -17.1766, -13.4283] [ 0.0000, 0.0000]

13 [ 1.0709, 1.0710] [ -17.1766, -13.4283] [ 0.0536, 0.1546]

14 [ 1.0362, 1.0487] [ -18.1762, -14.2064] [ 0.0000, 0.0000]

15 [ 1.0307, 1.0449] [ -18.2662, -14.2903] [ 0.0000, 0.0000]

16 [ 1.0381, 1.0513] [ -17.8166, -13.9444] [ 0.0000, 0.0000]

17 [ 1.0311, 1.0472] [ -18.1645, -14.2121] [ 0.0000, 0.0000]

18 [ 1.0193, 1.0366] [ -18.9491, -14.8180] [ 0.0000, 0.0000]

19 [ 1.0160, 1.0345] [ -19.1381, -14.9658] [ 0.0000, 0.0000]

20 [ 1.0203, 1.0383] [ -18.9045, -14.8000] [ 0.0000, 0.0000]

21 [ 1.0229, 1.0413] [ -18.4906, -14.4464] [ 0.0000, 0.0000]

22 [ 1.0235, 1.0418] [ -18.4724, -14.4368] [ 0.0000, 0.0000]

23 [ 1.0183, 1.0361] [ -18.7160, -14.6088] [ 0.0000, 0.0000]

24 [ 1.0112, 1.0319] [ -18.9230, -14.7373] [ 0.0000, 0.0000]

25 [ 1.0098, 1.0279] [ -18.4728, -14.3749] [ 0.0000, 0.0000]

26 [ 0.9902, 1.0122] [ -19.0010, -14.6834] [ 0.0000, 0.0000]

27 [ 1.0185, 1.0330] [ -17.8839, -13.9411] [ 0.0000, 0.0000]

28 [ 1.0080, 1.0135] [ -13.5871, -10.5278] [ 0.0000, 0.0000]

29 [ 0.9965, 1.0154] [ -19.2754, -14.9973] [ 0.0000, 0.0000]

30 [ 0.9837, 1.0053] [ -20.2658, -15.7635] [ 0.0000, 0.0000]

to make a comparison of the performance of the proposed method with that of (Vaccaro et. al,
2013) and the results are shown in Tables XIII and XIV. From the results we can easily say that
the bounds for the voltage and angles are comparable to that obtained in (Vaccaro et. al, 2013).
The active power at the slack bus for 2% variation in power load measurements is [1.6903,5.9333]
using the proposed technique which also includes the values obtained by the conventional method.
Similarly, the reactive power at slack bus is [2.2970,3.1437].
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Table X. Load Flow Solution for 30 bus Interval system with variation
in variation in line parameters and load power.

Bus |V | δ(deg.) QG

1 [ 1.0600, 1.0601] [0.0000, 0.0000] [ -0.2554, -0.0813]

2 [ 1.0429, 1.0430] [ -6.3599, -4.6519] [ -0.0866, 1.0658]

3 [ 1.0186, 1.0244] [ -9.0411, -6.9902] [0.0000,0.0000]

4 [ 1.0097, 1.0160] [ -10.9208, -8.4291] [0.0000, 0.0000]

5 [ 1.0100, 1.0101] [ -16.1915, -12.5710] [ -0.2100, 0.9167]

6 [ 1.0096, 1.0145] [ -12.8703, -9.9576] [ 0.0000, 0.0000]

7 [ 1.0011, 1.0058] [ -14.8317, -11.4978] [0.0000,0.0000]

8 [ 1.0100, 1.0101] [ -13.6881, -10.5760] [ -0.6206, 1.2308]

9 [ 1.0464, 1.0556] [ -16.2297, -12.6667] [ 0.0000, 0.0000]

10 [ 1.0365, 1.0522] [ -17.9878, -14.0874] [ 0.0000, 0.0000]

11 [ 1.0820, 1.0821] [ -16.2297, -12.6667] [ 0.1268, 0.1953]

12 [ 1.0530, 1.0617] [ -17.1885, -13.4416] [ 0.0000, 0.0000]

13 [ 1.0709, 1.0710] [ -17.1885, -13.4416] [ 0.0536, 0.1546]

14 [ 1.0362, 1.0487] [ -18.1879, -14.2195] [ 0.0000, 0.0000]

15 [ 1.0307, 1.0449] [ -18.2780, -14.3036] [ 0.0000, 0.0000]

16 [ 1.0381, 1.0513] [ -17.8287, -13.9580] [ 0.0000, 0.0000]

17 [ 1.0311, 1.0472] [ -18.1770, -14.2260] [ 0.0000, 0.0000]

18 [ 1.0193, 1.0366] [ -18.9609, -14.8313] [ 0.0000, 0.0000]

19 [ 1.0160, 1.0345] [ -19.1500, -14.9792] [ 0.0000, 0.0000]

20 [ 1.0203, 1.0383] [ -18.9166, -14.8137] [ 0.0000, 0.0000]

21 [ 1.0229, 1.0413] [ -18.5032, -14.4604] [ 0.0000, 0.0000]

22 [ 1.0236, 1.0418] [ -18.4851, -14.4508] [ 0.0000, 0.0000]

23 [ 1.0184, 1.0361] [ -18.7280, -14.6224] [ 0.0000, 0.0000]

24 [ 1.0112, 1.0319] [ -18.9357, -14.7514] [ 0.0000, 0.0000]

25 [ 1.0099, 1.0279] [ -18.4867, -14.3903] [ 0.0000, 0.0000]

26 [ 0.9903, 1.0122] [ -19.0147, -14.6987] [ 0.0000, 0.0000]

27 [ 1.0185, 1.0330] [ -17.8987, -13.9573] [ 0.0000, 0.0000]

28 [ 1.0080, 1.0135] [ -13.6048, -10.5465] [ 0.0000, 0.0000]

29 [ 0.9965, 1.0155] [ -19.2896, -15.0131] [ 0.0000, 0.0000]

30 [ 0.9837, 1.0053] [ -20.2796, -15.7789] [ 0.0000, 0.0000]

6. Conclusion

In this study, a method for considering the uncertainties of the input parameters in the load
flow solution for power systems has been presented. Based on interval arithmetic, the proposed
methodology can consider the uncertainties in both the load demand and the transmission line
parameters successfully. The solutions which we have obtained from the interval arithmetic based
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Table XI. Load Flow Solution for 57 bus Interval system with variation in load power.

Bus no. V (p.u.) δ(deg.) PD QD PG QG

1 [1.06,1.06] [0.00,0.00] [0.55,0.55] [0.17,0.17] [1.69,5.93] [2.29,3.14]

2 [1.00,1.00] [-1.39,0.40] [0.02,0.03] [0.87,0.88] [0.00,0.00] [-2.16, −0.52]

3 [1.00,1.00] [-8.89, −1.29] [0.40,0.41] [0.20,0.21] [0.40,0.40] [-4.00,4.72]

4 [0.99,0.99] [-11.03, −1.53] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

5 [0.99,0.99] [-13.58, −1.25] [0.12,0.13] [0.04,0.04] [0.00,0.00] [0.00,0.00]

6 [1.00,1.00] [-14.31,-0.73] [0.74,0.75] [0.02,0.02] [0.00,0.00] [-4.85,5.55]

7 [0.98,0.99] [-13.82,1.49] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

8 [1.00,1.00] [-11.21,5.25] [1.50,1.50] [0.21,0.22] [4.50,4.50] [-4.10,3.23]

9 [1.00,1.00] [-15.56, −0.99] [1.20,1.21] [0.25,0.26] [0.00,0.00] [-5.18,6.89]

10 [0.98,0.98] [-16.43, −3.19] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

11 [0.98,0.98] [-15.03, −2.27] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

12 [1.00,1.00] [-14.95, −2.68] [3.76,3.77] [0.23,0.24] [3.10,3.10] [-4.47,5.05]

13 [0.97,0.98] [-13.68, −2.59] [0.17,0.18] [0.02,0.02] [0.00,0.00] [0.00,0.00]

14 [0.97,0.98] [-12.43, −2.62] [0.10,0.10] [0.05,0.05] [0.00,0.00] [0.00,0.00]

15 [0.99,1.00] [-9.77, −2.12] [0.21,0.22] [0.05,0.05] [0.00,0.00] [0.00,0.00]

16 [1.00,1.01] [-12.11, −3.14] [0.42,0.43] [0.02,0.03] [0.00,0.00] [0.00,0.00]

17 [1.02,1.03] [-7.08, −2.30] [0.41,0.42] [0.08,0.08] [0.00,0.00] [0.00,0.00]

18 [0.98,0.99] [-15.72, −5.26] [0.27,0.27] [0.09,0.09] [0.00,0.00] [0.00,0.00]

19 [0.95,0.97] [-17.07, −6.00] [0.03,0.03] [0.00,0.00] [0.00,0.00] [0.00,0.00]

20 [0.95,0.97] [-17.11, −5.79] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]

21 [0.991.01] [-16.05, −4.71] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

22 [0.99,1.02] [-15.93, −4.57] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

23 [0.99,1.01] [-16.06, −4.59] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]

24 [0.97,1.00] [-17.31, −4.15] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

25 [0.92,0.96] [-22.70, −8.59] [0.06,0.06] [0.03,0.03] [0.00,0.00] [0.00,0.00]

26 [0.94,0.96] [-17.15, −3.80] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

27 [0.97,0.98] [-17.00, −2.22] [0.09,0.09] [0.00,0.00] [0.00,0.00] [0.00,0.00]

28 [0.98,1.00] [-16.39, −1.20] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

29 [1.00,1.01] [-15.93, −0.51] [0.17,0.17] [0.02,0.02] [0.00,0.00] [0.00,0.00]

30 [0.90,0.95] [-23.39, −9.16] [0.03,0.03] [0.01,0.01] [0.00,0.00] [0.00,0.00]

31 [0.88,0.93] [-24.22, −9.95] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

32 [0.91,0.95] [-23.12, −9.56] [0.01,0.01] [0.00,0.00] [0.00,0.00] [0.00,0.00]

33 [0.91,0.95] [-23.17, −9.58] [0.03,0.03] [0.018,0.01] [0.00,0.00] [0.00,0.00]

34 [0.94,0.97] [-17.64, −5.58] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

35 [0.95,0.98] [-17.35, −5.43] [0.05,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

36 [0.96,0.99] [-17.03, −5.25] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

37 [0.97,1.00] [-16.72, −5.09] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

38 [1.00,1.02] [-15.67, −4.51] [0.14,0.14] [0.07,0.07] [0.00,0.00] [0.00,0.00]

39 [0.97,0.99] [-16.79, −5.12] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

40 [0.96,0.99] [-17.14, −5.30] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

41 [0.99,1.00] [-18.99, −5.75] [0.06,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

42 [0.95,0.97] [-20.28, −6.90] [0.07,0.07] [0.04,0.04] [0.00,0.00] [0.00,0.00]

43 [1.01,1.02] [-16.21, −3.31] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]

44 [1.01,1.02] [-14.75, −4.31] [0.11,0.12] [0.01,0.01] [0.00,0.00] [0.00,0.00]

45 [1.03,1.04] [-12.03, −3.21] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]
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Table XII. Load Flow Solution for 57 bus Interval system with variation in load power (contd.).

Bus no. V (p.u.) δ(deg.) PD QD PG QG

46 [1.05,1.07] [-13.67, −3.36] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

47 [1.02,1.04] [-14.51, −3.63] [0.00,0.00] [0.29,0.29] [0.00,0.00] [0.00,0.00]

48 [1.01,1.03] [-15.03, −4.01] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

49 [1.02,1.04] [-16.32, −4.79] [0.17,0.18] [0.08,0.08] [0.00,0.00] [0.00,0.00]

50 [1.01,1.03] [-17.47, −5.07] [0.20,0.21] [0.10,0.10] [0.00,0.00] [0.00,0.00]

51 [1.04,1.05] [-17.42, −4.18] [0.17,0.18] [0.05,0.05] [0.00,0.00] [0.00,0.00]

52 [0.96,0.98] [-17.60, −1.80] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

53 [0.951,0.97] [-18.29, −2.36] [0.20,0.20] [0.10,0.10] [0.00,0.00] [0.00,0.00]

54 [0.99,1.00] [-17.83, −2.40] [0.04,0.04] [0.01,0.01] [0.00,0.00] [0.00,0.00]

55 [1.04,1.05] [-16.95, −2.05] [0.06,0.06] [0.03,0.03] [0.00,0.00] [0.00,0.00]

56 [0.94,0.97] [-20.45, −7.28] [0.07,0.07] [0.02,0.02] [0.00,0.00] [0.00,0.00]

57 [0.94,0.97] [-20.91, −7.80] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]

Table XIII. Load Flow Solution for 57 bus Interval system with variation in load and generator
power and in static reactive power.

Bus V (p.u.) δ(deg.) PD QD PG QG

1 [1.06,1.06] [0.00,0.00] [0.55,0.55] [0.17,0.17] [-0.42,8.06] [2.00,3.72]

2 [1.00,1.00] [-2.29,1.31] [0.02,0.03 [0.87,0.88] [0.00,0.00] [-2.92,0.34]

3 [1.00,1.00] [-12.69,2.50] [0.40,0.41] [0.20,0.21] [0.40,0.40] [-8.29,9.00]

4 [0.99,0.99] [-15.78,3.20] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

5 [0.99,0.99] [-19.74,4.90] [0.12,0.13] [0.04,0.04] [0.00,0.00] [0.00,0.00]

6 [1.00,1.00] [-21.10,6.05] [0.74,0.75] [0.02,0.02] [0.00,0.00] [-10.44,10.89]

7 [0.98,0.99] [-21.48,9.15] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

8 [1.00,1.00] [-19.45,13.49] [1.50,1.50] [0.21,0.22] [4.50,4.50] [-10.65,8.50]

9 [1.00,1.00] [-22.84,6.29] [1.20,1.21] [0.25,0.26] [0.00,0.00] [-12.92,14.76]

10 [0.97,0.99] [-23.06,3.43] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

11 [0.97,0.99] [-21.40,4.09] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

12 [1.00,1.000] [-21.09,3.44] [3.76,3.77] [0.23,0.24] [3.10,3.10] [-9.96,9.89]

13 [0.97,0.99] [-19.22,2.94] [0.17,0.18] [0.02,0.02] [0.00,0.00] [0.00,0.00]

14 [0.96,0.98] [-17.34,2.28] [0.10,0.10] [0.05,0.05] [0.00,0.00] [0.00,0.00]

15 [0.99,1.00] [-13.60,1.69] [0.21,0.22] [0.05,0.05] [0.00,0.00] [0.00,0.00]

16 [1.00,1.01] [-16.59,1.33] [0.42,0.43] [0.02,0.03] [0.00,0.00] [0.00,0.00]

17 [1.01,1.03] [-9.47,0.08] [0.41,0.42] [0.08,0.08] [0.00,0.00] [0.00,0.00]

18 [0.98,1.00] [-20.95, −0.03] [0.27,0.27] [0.09,0.09] [0.00,0.00] [0.00,0.00

19 [0.94,0.98] [-22.60, −0.47] [0.03,0.03] [0.00,0.00] [0.00,0.00] [0.00,0.00]

20 [0.93,0.98] [-22.77, −0.12] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]
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Table XIV. Load Flow Solution for 57 bus Interval system with variation in load and generator
power and in static reactive power (contd.).

Bus V (p.u.) δ(deg.) PD QD PG QG

21 [0.98,1.03] [-21.72,0.95] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

22 [0.98,1.03] [-21.61,1.10] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

23 [0.98,1.03] [-21.79,1.14] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]

24 [0.96,1.01] [-23.89,2.42] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

25 [0.90,0.98] [-29.76,-1.535] [0.06,0.06] [0.03,0.03] [0.00,0.00] [0.00,0.00]

26 [0.92,0.97] [-23.83,2.87] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

27 [0.96,0.99] [-24.38,5.15] [0.09,0.09] [0.00,0.00] [0.00,0.00] [0.00,0.00]

28 [0.98,1.01] [-23.99,6.39] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

29 [1.00,1.02] [-23.64,7.19] [0.17,0.17] [0.02,0.02] [0.00,0.00] [0.00,0.00]

30 [0.88,0.97] [-30.51, −2.04] [0.03,0.03] [0.010.01] [0.00,0.00] [0.00,0.00]

31 [0.85,0.96] [-31.35, −2.82] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

32 [0.88,0.98] [-29.90, −2.78] [0.01,0.01] [0.00,0.00] [0.00,0.00] [0.00,0.00]

33 [0.88,0.98] [-29.97, −2.79] [0.03,0.03] [0.019,0.01] [0.00,0.00] [0.00,0.00]

34 [0.92,0.99] [-23.67,0.44] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

35 [0.93,1.00] [-23.31,0.53] [0.05,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

36 [0.94,1.00] [-22.92,0.63] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

37 [0.95,1.01] [-22.54,0.71] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

38 [0.99,1.03] [-21.24,1.05] [0.14,0.14] [0.07,0.07] [0.00,0.00] [0.00,0.00]

39 [0.95,1.01] [-22.63,0.71] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

40 [0.94,1.00] [-23.06,0.60] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

41 [0.98,1.01] [-25.61,0.86] [0.06,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

42 [0.94,0.99] [-26.96, −0.21] [0.07,0.07] [0.04,0.04] [0.00,0.00] [0.00,0.00]

43 [1.00,1.02] [-22.66,3.13] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]

44 [1.00,1.0388] [-19.97,0.91] [0.11,0.12] [0.01,0.01] [0.00,0.00] [0.00,0.00]

45 [1.03,1.05] [-16.44,1.19] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

46 [1.04,1.07] [-18.83,1.79] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

47 [1.01,1.05] [-19.94,1.79] [0.00,0.00] [0.29,0.29] [0.00,0.00] [0.00,0.00]

48 [1.00,1.04] [-20.54,1.49] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

49 [1.01,1.05] [-22.08,0.97] [0.17,0.18] [0.08,0.08] [0.00,0.00] [0.00,0.00]

50 [1.00,1.04] [-23.67,1.13] [0.20,0.21] [0.10,0.10] [0.00,0.00] [0.00,0.00]

51 [1.03,1.06] [-24.04,2.43] [0.17,0.18] [0.05,0.05] [0.00,0.00] [0.00,0.00]

52 [0.96,0.99] [-25.50,6.08] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

53 [0.94,0.98] [-26.25,5.59] [0.20,0.20] [0.10,0.10] [0.00,0.00] [0.00,0.00]

54 [0.99,1.01] [-25.55,5.31] [0.04,0.04] [0.01,0.01] [0.00,0.00] [0.00,0.00]

55 [1.04,1.05] [-24.40,5.39] [0.06,0.06] [0.03,0.01] [0.00,0.00] [0.00,0.00]

56 [0.93,0.99] [-27.03, −0.70] [0.07,0.07] [0.02,0.02] [0.00,0.00] [0.00,0.00]

57 [0.92,0.99] [-27.46, −1.25] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]

REC 2016 - S. Ray and S. Ralhan

396



Reliable Power Flow Analysis of Systems with Uncertain Data

load flow method encompass all the solutions obtained from conventional load flow simulations thus
guaranteeing the results. The solutions obtained by the proposed method provide more information
in qualitative terms as the values obtained also include the unknown uncertainties. Conventional
load flow solutions give only deterministic values which are approximated results.

Interval methods are often affected by overestimation, hence the computed error bounds become
overly pessimistic. Even though (Vaccaro et. al, 2010) have stated that use of interval arithmetic
in power flow analysis leads to solutions which are not useful for practical applications, alternative
evaluation schemes can be applied to overcome this problem. The dependency problem and the
wrapping effect are particular sources of overestimation in interval computations. Dependency
problem occurs due to the failure of interval arithmetic to identify the different occurrences of
the same variable. For reducing both the dependency problem and the wrapping effect, interval
arithmetic has been extended with symbolic computations using Taylor models in (Neher, Jackson
and Nedialkov, 2007). The dependency problem can be also eliminated by applying a suitable
extension of the Jacobian matrix as discussed in (Kearfott, 1991). Consequently, this technique can
be made computationally more robust and reliable, thus yielding better and accurate solutions.

Load flow analysis helps to ensure that cables, transformers, lines are sized properly to carry the
variable load. From the results, it can be determined whether the system voltages remain within
specified limits and the equipments are not getting overloaded. The profiles of bus voltages and
angles help us to identify real and reactive power flows and minimize the transmission losses. Load
flow studies become important in planning and expansion while ensuring that each generator runs
within the specified limits and demand be met without overloading the power infrastructure. The
reactive power bounds provide us an information regarding the injection of reactive power into the
system, in order to keep the power factor close to unity.

Also, in the initial stages of planning and design studies of power systems, the proposed technique
will be useful to save time, effort, and the resources required. The results obtained by the proposed
method take into account the demand error which is very significant, whence, the load uncertainty
is not accounted for, the load flow solutions obtained would be a ’snapshot’ for a single specific
configuration and operating conditions of the power system. If uneven variations in active and
reactive powers in different buses are considered then we can arrive at a more realistic solution.
The same is being considered as a part of the future work.

New techniques that are computationally robust and reliable are needed for the analysis of power
systems with uncertainties, especially in view of the increasing use of renewable power sources,
such as wind, hydro and solar power which are highly variable. However, using interval arithmetic
computational requirements are greater than the conventional load flow methods.
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Abstract: In lattice or particle formulations of models for quasi-brittle materials, a medium is
discretized “a priori” according to an idealization of its internal structure. Geometrical parameters
of particles or lattice equip these type of formulations with inherent characteristic lengths and they
have the intrinsic ability of simulating the geometrical features of material internal structure. This
allows the accurate simulation of damage initiation and crack propagation at various length scales,
however, at increased computational costs. Here we employ the so-called Lattice Discrete Particle
Model (LDPM) recently proposed by (Cusatis et al., 2011). LDPM was calibrated, and validated
against a large variety of loading conditions in both quasi-static and dynamic loading conditions
and it was demonstrated to possess superior predictive capability, see (Cusatis et al., 2011b). Nev-
ertheless, the utilized calibration procedure was based on a hand-fitting, which complicates further
practical applications of the model. Here we present a Bayesian inference of model parameters from
experimental data obtained from notched three-point-bending tests and cube compression tests.
The Bayesian inference allows to solve the inverse problem as well-possed and to quantify posterior
uncertainty in parameters by combining a prior knowledge about the realistic parameter values and
uncertainty contained in measurement errors. In particular, we obtain the posterior distributions
by robust the Markov chain Monte Carlo sampling, where the computational burden, arising from
repeated model simulations, is overcome by using a polynomial chaos-based surrogate of the LDPM.

Keywords: lattice discrete particle model, concrete, notched three point bending test, cube com-
pression test, Bayesian inference, Markov chain Monte Carlo, polynomial chaos.

1. Introduction

In order to predict the behaviour of the structural system under the loading in a computational way,
the corresponding numerical model has to be properly calibrated. In other words, parameters of the
mathematical model of the system have to be estimated as accurately as possible to obtain realistic
predictions, e.g. for usage in an appropriate reliability analysis or structural design optimisation.
In this paper, the Lattice Discrete Particle Model (LDPM) is employed to accurately describe the
macroscopic behaviour of concrete in elastic, fracturing, softening, and hardening regimes (Cusatis
et al., 2011b; Cusatis et al., 2011a). To infer the model parameters from indirect experimental
measurements one can proceed in two principally different ways. The traditional approach is deter-

c© 2016 by authors. Printed in Germany.
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ministic, while advances in surrogate modelling and increasing computational capacity of modern
computers permitted many researches to focus on parameter identification in probabilistic setting.

The most common method of parameter estimation is based on fitting the response of the numer-
ical model to the experimental data. This deterministic approach leads to optimising parameters so
as to minimise the difference between the data and the model response. The optimisation problem
is, however, often ill-posed and thus requires the employment of robust optimisation algorithms.
The result of such optimisation process is only the single-point estimate of parameter values, as
you can see in Figure 1b, thus any information beyond the mean values of parameters is omitted.
Consequently, this deterministic inversion method does not provide any quantification of the un-
certainty in parameter estimates which in fact exists and is caused by e.g. an insufficient number
of observations and measurement errors. This contribution focuses on identification of epistemic
(reducible, subjective, cognitive) uncertainty arising from our lack of knowledge (Oberkampf et al.,
2002) which is supposed to be reduced by any new measurement according to the coherence of
learning (Mantovan and Todini, 2006; Beven et al., 2007).

(a) Material =⇒ Experiment =⇒

Data

titj

(b)
Mean values of

material parameters
=⇒ Model =⇒

Mean response

(c)
Epistemic uncertainty

in deterministic
material parameters

=⇒ Model =⇒

Uncertainty in mean response

Figure 1. Scheme of an experiment and different approaches to parameter identification.

In the last decades probabilistic methods for stochastic modelling of uncertainties have become
applicable thanks to a growing computational capacity of modern computers. The probabilistic
approach restates the inverse problem as well-posed in an expanded stochastic space by modelling
the parameters as well as the observations as random variables with their probability distributions
(Kaipio and Somersalo, 2005). Several methods for the uncertainty quantification in probabilistic
settings have been proposed in the literature. The last decade witnessed an intense development in
the field of Bayesian updating of epistemic uncertainty (Figure 1c) in description of deterministic
material or structural parameters, see e.g. (Marzouk et al., 2007). Here, a likelihood function is
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established to quantify our confidence in observed data, with the goal to update our prior knowledge
on model parameters (Gelman et al., 2004). The increasing popularity of Bayesian methods is
motivated by developments in the field of spectral stochastic finite element method, which allows
to alleviate the computational burden by surrogate models such as polynomial chaos expansions
(Marzouk and Najm, 2009). The most commonly referred techniques of Bayesian inference in
literature are based on the Markov chain Monte Carlo method (Marzouk et al., 2007), the Kalman
filter (Rosić et al., 2013) or optimal transport maps (El Moselhy and Marzouk, 2012).

2. Bayesian Inference

Consider a stochastic problem
z(x, ω) = y(x) + ε(ω), (1)

with uncertain model parameters x and random observable data z, which can be predicted by a
model response y(x) besides a measurement error ε. In Bayesian statistics, probability represents a
degree of belief about the parameter values (Tarantola, 2005). Combining the initial knowledge in
the form of the prior distribution p(x) and the experimental data as the likelihood function p(z|x)
according to Bayes rule

p(x|z) =
p(z|x)p(x)

p(z)
=

p(z|x)p(x)∫
x p(z|x)p(x)dx

, (2)

we obtain the posterior distribution of the parameters. The mean values of the updated distri-
bution are equal to the best guess of the parameters values with the uncertainty represented
by the corresponding variance. However the posterior statistical moments cannot be generally
computed analytically, because the identified distribution including the whole numerical model is
too complicated.

To overcome this obstacle, we use Markov chain Monte Carlo sampling (MCMC) of the poste-
rior distribution, which is a method based on a creation of an ergodic Markov chain of required
stationary distribution equal to the posterior (Gilks et al., 2005; Geyer, 2011). There are different
algorithms for constructing this chain (Spall, 2003), e.g. Gibbs sampler or Metropolis-Hastings
algorithm, which avoids calculating of the normalisation constant in Eq. (2) by evaluating only ratios
of target probabilities. Suitable setting of the proposal distribution for a random walk is important
and can be evaluated on the basis of acceptance rate (Rosenthal, 2011) or autocorrelation, which is
required to be minimal. The convergence speed of the procedure depends also on the appropriate
choice of the starting point (Geyer, 2011). The essential advantage of this method is its versatility
for usage with nonlinear models, when for an infinite number of samples it gives the exact solution.
The disadvantage of this method is its high computational effort resulting from necessity of a high
number of model simulations. In order to accelerate this sampling procedure in the identification
process, the evaluations of a numerical model can be replaced by evaluations of a computationally
efficient model surrogate.
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2.1. Polynomial chaos expansion

In this contribution, we employ polynomial chaos expansion (PCE) for the approximation of the
model response in the stochastic space (Marzouk et al., 2007), which has the following form:

ỹ(x(ξ)) =
∑
α

βαψα(ξ), (3)

where βα is a vector of PCE coefficients βα,i corresponding to a particular component of the system
response yi. ψα(ξ) are multivariate polynomials. The expansion (Eq. (3)) is usually truncated to
the limited number of terms nβ, which is very often related to the number of random variables nx
and to the maximal degree of polynomials np according to the relation

nβ =
(np + nx)!

np!nx!
. (4)

PCE can be used to approximate the response with respect to the probability distribution of the
random variables ξ. The convergence of the approximation error with the increasing number of
polynomial terms is optimal in case of orthogonal polynomials of a special type corresponding to
the probability distribution of the underlying variables (Xiu and Karniadakis, 2002). In particular,
we employ Legendre polynomials associated with the uniform distribution.

The efficiency of this technique depends on computational requirements of the PCE construction
and its consequent accuracy. In this contribution, the PCE coefficients are computed with help of
linear regression (Blatman and Sudret, 2010a), which is based on a set of model simulations.
The samples are drawn according to a stratified procedure called design of experiments (DoE), in
particular well-known Latin hypercube sampling (LHS), which is able to respect the prescribed
probability distributions (Janouchová and Kučerová, 2013).

2.2. Sensitivity analysis

Global sensitivity analysis (SA) is an important tool for investigating properties of complex systems.
It is a valuable part of solution of an inverse problem such as a parameter identification, where
the aim of SA can be estimating the influence of the identified parameters to the model response.
SA provides some information about the relationship between the system outputs/model response
and the system inputs/model parameters on their whole domain. Several approaches to SA have
been developed, see e.g. (Saltelli et al., 2000) for an extensive review. The presented contribution
is focused on Sobol sensitivity indices expressing an influence of chosen parameters on the response
variance. Sobol indices can be analytically computed from the PCE coefficients (Blatman and
Sudret, 2010b) according to the following relation

SPCE
i1,...,is =

∑
α∈Ii1,...,is

β2
αE[ψ2

α(ξ)]∑nβ
α=1 β

2
αE[ψ2

α(ξ)]
, (5)

where E[ψ2
α(ξ)] is computed specifically for Legendre polynomials as

E[ψ2
α(ξ)] =

∫
ψ2
α(ξ)dPψ(ξ) =

∫
· · ·

∫
nξ

nξ∏
j=1

(ψ2
α,j(ξj))dPψ(ξ1) · · · dPψ(ξnξ) =

nξ∏
j=1

2

2αξj + 1
, (6)
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where αξj is a degree of ξj in a polynomial term ψα. Ii1,...,is defines the polynomial terms depending
only on (ξi1 , ..., ξis), i.e.

Ii1,...,is = {αk = 0⇐⇒ k /∈ (i1, . . . , is),∀k = 1, . . . , nξ}. (7)

3. Calibrated Material Model

In this section, the examined material model, used for the calibration, is briefly described. The
material model, often employed to simulate quasi-brittle materials, is chosen to demonstrate the
capability of aforementioned approach. This model is based on lattice or particle formulations in
which materials are discretized “a priori” according to an idealization of their internal structure.
Particle size and size of the contact area among particles, for particle models, as well as lattice
spacing and cross sectional area, for lattice models, equip these type of formulations with inherent
characteristic lengths and they have the intrinsic ability of simulating the geometrical features of
material internal structure. This allows the accurate simulation of damage initiation and crack
propagation at various length scales at the cost, however, of increased computational costs.

Earlier attempts to formulate particle and lattice models for fracture are reported in (Cusatis
et al., 2003; Cusatis et al., 2006; Cusatis, 2011; Bažant et al., 1990; Yip et al., 2006) while the
most recent developments were published in a Cement Concrete Composites special issue (Cusatis
and Nakamura, 2011). A comprehensive discrete formulation for concrete was recently proposed
by Cusatis and coworkers (Cusatis et al., 2011b; Cusatis et al., 2011a) who formulated the so-
called Lattice Discrete Particle Model (LDPM). LDPM was calibrated, and validated against a
large variety of loading conditions in both quasi-static and dynamic loading conditions and it was
demonstrated to possess superior predictive capability.

In the present study the basic material properties of the tested concrete mix are kept constant
for all simulations. Note that these parameters influence the generation of concrete meso-structure,
see Table I. However, the seed number, governing the sampling of cumulative distribution func-

Table I. Values of parameters governing the gen-
eration of concrete meso-structure.

material property unit value

minimum particle size d0 mm 4

maximum particle size da mm 16

cement content c kg/m3 240

water to cement ratio w/c - 0.83

aggregate to cement a/c - 8.83

Fuller coefficient nF - 0.5

concrete density ρ kg/m3 2400
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E. Janouchová, A. Kučerová, J. Vorel and R. Wendner

tion of concrete granulometric distributions by a random number generator, is kept random. The
distribution of particles influences the material response and is assumed to act as a noise in the
response.

The parameters of the mathematical model which are kept constant or calibrated by the proce-
dure described above are summarised in Table II.

Table II. Values of material model parameters used in the numerical
simulations.

material property unit value (range)

normal modulus E0 MPa 20000 − 70000

shear-normal coupling α - 0.2 − 0.3

tensile strength σt MPa 1.5 − 5

tensile characteristic length lt mm 50 − 300

softening exponent nt - 0.1 − 1

shear/strength ratio σs/σt - 1.5 − 8

initial friction µ0 - 0.001 − 0.5

compressive strength σc0 MPa σc0 = 40σt

transitional stress σN0 MPa σN0 = 240σt

initial hardening modulus ratio Hc0/E0 - 0.4

transitional strain ratio κc0 - 4

deviatoric strain threshold ratio κc1 - 1.0

deviatoric damage parameter κc2 - 5.0

asymptotic friction µ∞ - 0.0

densification ratio Ed/E0 - 1.0

volumetric-deviatoric coupling β - 0

4. Results

The identification of the seven material model parameters for concrete is based on two types of
experiments, specifically a uniaxial compression test and a notched three-point-bending test. The
first experiment was repeated three times while the second one four times. For convenience and
readability, data are presented in terms of nominal stress N and nominal strain εN . The most
traditional tests to characterise concrete is the compression test performed on cubes of 150 mm
side length. The nominal values are defined as

σN =
F

a2
and εN =

u

a
(8)
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where F is the applied load, u denotes the load point displacement and a is the side length. The
fracture properties of concrete are characterised by means of the notched three-point-bending test.
The nominal stress and strain are

σN =
3Fl

dh2
and εN =

CMOD

h
(9)

where l stands for the beam span, h, d are the beam height and width, respectively. CMOD is the
crack mouth opening displacement measured over the notch.

Moreover, to eliminate the error in measurement caused by the testing machine stiffness, the
inelastic part of the strain is used for the model calibration

εinel
N = εN − σN (1/K) (10)

where K is the corresponding elastic stiffness. To capture the elastic properties of the model, the
initial elastic part of the cube compression test is utilised.

The updated joint probability distribution of the parameters is formulated according to Bayes’
formula as a product of prescribed uniform prior distribution with bounds given in Table III
and likelihood function arising from the experimental errors, which are supposed to be normally
distributed with zero mean values and standard deviations derived from the experimental data.
Specifically, in the identification process we consider from the compression test the measured stress
σN discretized into 250 strain steps with the error ε ∼ N(0, 82) and elastic stiffness K with error
ε ∼ N(0, 28802), from the notched three-point-bending test the measured stress σN discretized into
250 strain steps with the error ε ∼ N(0, 22).

Table III. Prior bounds and identified statistical moments of parameters’ distri-
bution.

E0 [MPa] α [-] σt [MPa] lt [mm] nt [-] σs/σt [-] µ0 [-]

Prior

MIN 20000 0.200 1.500 50.0 0.100 1.500 0.001

MAX 70000 0.300 5.000 300.0 1.000 8.000 0.500

Identification

MEAN 31183 0.297 2.236 166.6 0.910 3.192 0.063

STD 1998 0.003 0.193 17.8 0.037 0.338 0.051

The corresponding posterior distribution of the model parameters is obtained by MCMC sam-
pling. Because the full numerical model simulation is computationally intensive (approx. 4 hours for
the compression test and 10 hours for the bending test), the surrogate model has to be used. In this
case of the stochastic model, the approximation can also serve for a purpose of eliminating the noise
of the material model response caused by the random distribution of particles. We employ PCE in
a form of Legendre polynomials of the third degree constructed by linear regression based on 200
simulations of the full model for prior parameter samples. Thanks to this approximation we obtain
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E. Janouchová, A. Kučerová, J. Vorel and R. Wendner

500, 000 posterior samples in only few hours. The identified mean values of the parameters together
with the corresponding epistemic uncertainties expressed by the posterior standard deviations are
given in Table III. The updated univariate and bivariate marginal probability distributions are
shown in Figure 2.

E0 [MPa] α [-] σt [MPa] lt [mm] nt [-] σs/σt [-] µ0 [-]

E0

α

σt

lt

nt

σs/σt

µ0

Figure 2. Identified 1D and 2D marginal pdfs of model parameters.
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In order to validate the accuracy of the identification process, we compare the experimental data
with the model response corresponding to the identified mean values of the model parameters which
is shown in Figures 3 and 4. There are plotted five full stochastic model simulations and also the
PCE-based response. As one can see, the PCE-based response fits the experimental data very well
in the both experimental tests while the full numerical model response differs slightly in the case
of the three-point-bending test and more significantly in the case of uniaxial compression test. It
means that the used model approximation is not accurate enough. One reason can be a low degree
of the polynomials or the training samples are not chosen properly. In Figures 3 and 4, there are
also plotted the full numerical model simulations used for the approximation training. From these
graphs the training curves seem to be appropriate because the experimental data do not lie outside
the covered region.
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50

100

150

εinelN [-]

σ
N

[M
P
a
]

 

 
Training simulations
Experiments
Identified PCE response
Identified response

Figure 3. Comparison of experimental data and model response corresponding to the identified parameters for the
uniaxial compression test.
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Figure 4. Comparison of experimental data and model response corresponding to the identified parameters for the
notched three-point-bending test.

While the increasing part of the stress-strain diagrams is fitted satisfactorily, the approximation
error is mainly related to their decreasing part. The problem can be explained with help of Figure
5 which shows a scatter diagram with maximal nominal stress σN on the vertical axis and area
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below the considered stress-strain curve A =
∫
σdε on the horizontal axis. From this point of view,

the experimental data lie outside the training simulations and the model approximation is forced
to extrapolate.
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Figure 5. Comparison of integrals of training and experimental curves for uniaxial compression test (a) and
three-point-bending test (b).

The unsuccessful calibration of the full model is apparently caused by the inappropriate prior
parameters’ distribution. The results of sensitivity analysis shown in Figure 6 can help us to estimate
the model parameters, which are already identified well and which the decreasing part of the
stress-strain curves is sensitive to so they probably cause the problematic approximation error.
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Figure 6. Sensitivity analysis for uniaxial compression test (a) and three-point-bending test (b) based on Sobol indices
computed from PCE approximation.

We estimate that tensile strength σt and shear/strength ratio σs/σt can be identified well while
softening exponent nt, shear-normal coupling α and initial friction µ0 can be the problematic
parameters. The posterior mean values of the latter two are also very near to the upper bound of
the prior uniform distribution which supports our assumption. Unfortunately, to this day we do not
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have the necessary additional simulations to confirm this and provide an appropriate calibration of
the examined material model.

5. Conclusions

The employed identification procedure is an efficient tool for calibration of nonlinear models al-
lowing to take into account epistemic uncertainties caused by e.g. experimental errors or a small
number of experimental data. Usage of PCE-based model approximation enables to handle the
computational requirements of Markov chain Monte Carlo sampling of the posterior distribution.
In this contribution, the calibration of the lattice discrete particle model for concrete does not
succeed properly because of the inappropriate choice of prior range of the parameters values,
which leads to the inaccurate approximation of the model response. In other words, the obtained
parameters’ distribution is correct with respect to the PCE-based model approximation, which
however significantly differs from the full numerical model. This inaccuracy can be overcome by
prescribing a new prior ranges for the evaluated parameters to obtain the necessary information
for constructing the accurate model approximation.
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Abstract: In practice, laboratory experiments are still mostly designed by trial and error method
using the expert knowledge of the material model to be calibrated. This is, however, a difficult task
in the case of advanced models developed to simulate engineering problems by non-linear finite
element techniques. Ruffio et al. (2012) proposed method for optimisation of model-based design of
experiments using robust evolutionary algorithms. Such a method, however suffers from the high
computational demands, which make their application to non-linear finite element (FE) simulations
difficult. In this contribution we present a novel method introducing surrogate of FE model based
on polynomial chaos expansion (PCE) and global formulation of sensitivity matrices. PCE-based
surrogates bring two principal advantages. First, they allow to overcome the computational burden
of many times repeated FE simulations within the process of experiment design optimisation.
Second, they allow fast analytical evaluation of Sobol indices or response variances, which can
be used for quantification of global sensitivity of measured quantities to identified parameters.
The advantages and drawbacks of the proposed method are demonstrated on a simple problem of
two-dimensional nonstationary linear heat transfer. The goal of the experiment design is to find
optimal positions of three thermocouples so as to identify the volumetric thermal capacity and
the conductivities in the two principal directions while considering uncertainties in the prescribed
loading conditions, positions of thermocouples and measurements errors.

Keywords: robust experiment design, global sensitivity, Sobol indices, polynomial chaos, evolu-
tionary optimisation

1. Introduction

The last decade has witnessed growing interest in the development of models that can describe
materials response more realistically. This has inspired many new ideas in phenomenological model
building, in which the subscale phenomena are accounted for by internal parameters. However, up
to the present time, the majority of such advanced models is of a limited practical use, because
they are difficult to calibrate by conventional experiments. An experiment design is often done by
the trial and error method using the expert, often heuristic, knowledge on the calibrated model.

© 2016 by authors. Printed in Germany.
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Such efforts result in a series of single-purpose tests and manual or optimisation-based fitting of
measured data. In the case of complex phenomenological models, however, such an approach is often
not feasible or results in excessive financial and time costs due to a high number of experiments.
Thus, the model complexity brings the need for the design of new experimental procedures. Such
problem goes far beyond traditional curve-fitting procedures, as the key issue is to ensure that
all model parameters are correctly calibrated by activating all relevant phenomena during the
experiment. In addition, the procedure must be robust with respect to inevitable experimental
inaccuracies.

The topic of optimal experiment design was mostly addressed by researchers from the field of
chemical engineering (Franceschini and Macchietto, 2008; Telen et al., 2012) or theoretical biology
(Lindner and Hitzmann, 2006; Van Derlinden et al., 2010). The developed methods, however, suffer
from two principal shortcomings:

- they aim at experiments designed for calibration of models with linear relation between the
parameters and response and

- they consider inevitable errors on experimental observations, but completely neglect possible
errors in parameters of the experiment arising due to its imperfect realisation.

These reasons significantly limit the use of the methods to the case of complex nonlinear material
models calibrated from imprecise experiments. Therefore, our goal is to extend the existing methods
towards non-linear models under consideration of all the inevitable sources of errors.

To facilitate the following discussion, we introduce a scheme of an experiment suitable for
material model calibration in Figure 1. Such an experiment deals with three types of variables: (i)

Experiment

Material parameters (m)

Design variables (d)

Noise variables (b)

Experimental observation (r)+ +

Figure 1. Experimental design problem.

material properties (m) to be identified, e.g. thermal conductivity, heat capacity or water vapour
resistance, (ii) design variables (d) include loading types (e.g. prescribed temperature, moisture flux
or heat transfer on boundary) and loading magnitude as well as positions of sensors (thermometers,
hygrometers etc.) and (iii) noise (b). As emphasized by red arrow, the noise variables must affect
not only the experiment output characterizing measurement errors, but also the design variables
so as to represent the imperfect realisation of the experiment (imprecise positioning of sensors
or imperfections in prescribed loading conditions). The design variables are the only variables
controlled by the experiment designer.
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The goal of such a process is to find the experiment configuration defined by design variables d,
which (i) activates all the phenomena described by the investigated material model (i.e. is maximally
sensitive to all model parameters m) and (ii) reflects the technological aspects, limitations and
inherent experimental errors b. Hence, we speak about model-based experiment design, which needs
to be (i) optimal in terms of the maximum information content on investigated parameters and (ii)
robust to be minimally influenced by experimental errors. Both criteria – optimality and robustness
– may be expressed by sensitivities of experimental observations r to given material properties and
noise variables, respectively, leading to the following definition of the optimisation process:

max
d

Sr,m , (1)

min
d

Sr,b , (2)

s.t. m ∈M , b ∈ B,d ∈ D , (3)

where Sr,m and Sr,b stand for a sensitivity measures of observations r to material propertiesm and
noise variables b, respectively. M is a feasible domain of material parameters typically defined by
an expert on the investigated material model in terms of feasible intervals. The feasible domains of
design variables D and noise variables B are supposed to be given by an expert in experimentation
commonly in the form of feasible intervals for design variables and mean and variance of noise
variables.

All methods reviewed in (Franceschini and Macchietto, 2008) or in many more recent articles
(e.g. (Hametner et al., 2013)) completely omit the imperfections in experimental configuration and
compute the sensitivities Sr,m as local derivatives. The sensitivities are then organised into the
information matrix quantifying the information content of the experiment and measurement errors
enter into the information matrix simply as a scaling factors of the computed sensitivities Sr,m.
Different optimality criteria are then proposed as a scalar measure of the information matrix used
as an objective function for the experiment design optimisation process.

The authors in (Ruffio et al., 2012) employ the method for robust experiment design considering
the uncertainties related to design variables or other known parameters of the experiment. The
uncertainties are included in the modified Fisher information matrix and a new optimality criterion
is proposed to quantify the information content of the experiment.

The remaining important drawback of all the presented methods consists in computing local
derivatives-based sensitivities. In case of nonlinear relation between observations r and investigated
parameters m, the local sensitivity can be evaluated only for a given values of parameters m and
thus their values can be estimated only approximately. One often employed solution is the so-called
worst case or maximin approach computing the sensitivities in a set of points and optimising the
experimental design so as to maximise the minimal obtained sensitivity (Asprey and Macchietto,
2002; Ruffio et al., 2012). Such a sensitivity estimate is rough, but can be quickly evaluated in
case of analytically derived sensitivities. However, if a numerical computation of derivatives is
inevitable, such evaluation of sensitivities becomes computationally prohibitive especially during
an optimisation process requiring large number of iterations.

This limitation can be overcome by two novelties proposed in this paper. The first one consist in
employment of global sensitivities quantifying the sensitivity over the whole prescribed domain of all
the involved parameters. In particular, for a given set of controlled design variables d, the sensitivity
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is evaluated over the domains B and M defined as probability distributions (typically normal and
uniform) of the respective noise and material parameters. There are different criteria measuring the
global sensitivity, mostly based on the computationally expensive sampling procedure, see e.g. (Hel-
ton et al., 2006) for a thorough review. Certain time savings may be achieved by optimised sampling
as presented by our team members in (Janouchová and Kučerová, 2013), but the predictions in case
of high dimensional domains will be still too costly. To overcome this obstacle, the second novelty
of our approach concerns the introduction of computationally cheap surrogate models, commonly
used in the field of robust design optimisation of structures (Beyer and Sendhoff, 2007; Jurecka,
2007) to replace time consuming structural simulations within the optimisation process. Here we
focus on polynomial chaos-based surrogates, which allow for fast analytical evaluation of Sobol
indices without the need for exhaustive sampling (Blatman and Sudret, 2010). The global sensitivity
measures thus come as the by-product of surrogate construction.

In this paper we follow the work of Ruffio et al. (2012) and compare our proposed global
sensitivity-based strategy with their robust worst case scenario-based approach using local sen-
sitivities. We also elaborate the same numerical example of two-dimensional nonstationary linear
heat transfer. In this example, the goal of the experiment design is to find optimal positions of three
thermocouples so as to identify the volumetric thermal capacity and the conductivities in the two
principal directions while considering uncertainties in the prescribed loading conditions, positions
of thermocouples and measurements errors.

2. Inverse Problem - Nonlinear Regression with Random Parameters

We consider a nonlinear model of an experiment resulting in multiple observations f(d, bd,m) =
(. . . , fi(d, bd,m), . . . )T. Here bd denotes a vector of random parameters with prescribed probabil-
ity distribution quantifying our uncertainty related to experimental setting (e.g. imperfections in
values of boundary conditions or loading, imperfections in sensors positioning etc.). Moreover, the
experimental observations r(d) are also contaminated by measurement errors br and thus we write:

r(d) = f(d, bd,m) + br . (4)

We suppose that the true value of material parameters m to be identified is m∗ ∈M , where M is
some given feasible domain of material properties. The estimate m̂ is generally defined as a least
square solution given as

m̂ = argmin
m∈M

∑
i

(ri − fi(d, bd,m))2 , (5)

which is however nontrivial to obtain when the model f(d, bd,m) is a nonlinear function of m
and some robust optimisation algorithm will be necessary. Moreover, uncertainty in parameters bd
resulting in uncertainty in the obtained estimate m̂ is also difficult to obtain due to the nonlinearity
of the model w.r.t. random parameters bd and generally will require some Monte Carlo-based
sampling procedure.

Here we consider an approximate solution of the inverse problem based on the first order Taylor
development of the model f(d, bd,m) around the solution (m̂, bd) given as

fbd,m̂(d, bd,m) = f(d, bd, m̂) + Sbd(bd − bd) + Sm(m− m̂) , (6)
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where

Sbd = Sbd(d, bd, m̂) =


∂f1(·)
∂bd,1

∂f1(·)
∂bd,2

· · ·
∂f2(·)
∂bd,1

∂f2(·)
∂bd,2

· · ·
...

...
. . .

 and Sm = Sm(d, bd, m̂) =


∂f1(·)
∂m1

∂f1(·)
∂m2

· · ·
∂f2(·)
∂m1

∂f2(·)
∂m2

· · ·
...

...
. . .


(7)

denote the sensitivity matrices to noise parameters bd and identified material properties m, respec-
tively.

Using this linearisation, the least square solution (Eq. (5)) can be obtained explicitly as

m̂(d, bd, br) =
(
ST
mSm

)−1
ST
m

[
r(d)− f(d, bd, m̂)− Sbd(bd − bd) + Smm̂

]
(8)

and the variance covariance matrix of m̂ is then given as

cov(m̂) =
(
ST
mSm

)−1
ST
m

[
cov(br) + Sbdcov(bd)S

T
bd

]
Sm . (9)

3. Robust Experiment Design

As described in previous section, the inverse problem considering the random noise parameters and
nonlinear model w.r.t. to both the noise parameters bd as well as to the identified material properties
m is computationally nontrivial and generally requires some sampling procedure for evaluating the
resulting uncertainty in parameter estimates. In the phase of experiment preparation, the goal is to
design the experiment leading to minimal uncertainty in the parameter estimates. This generally
leads to even more complex optimisation problem, where each iteration of a robust optimisation
algorithm involves a solution of the underlying inverse problem.

3.1. Local sensitivity-based robust experiment design

Ruffio et al. (2012) suggest a procedure based on the linearisation described in previous section,
where uncertainty in parameter estimates is expressed by variance covariance matrix obtained
explicitly according to Eq. 9. The authors further propose the so-called F-optimality criterion,
which is similar to commonly used A-optimality criterion given as

A(d, m̂) = trace
([

(Smdiag(m̂))T(Smdiag(m̂))
]−1
)

=
∑
i

(
σ̂mi
m̂i

)2

(10)

and which is equivalent to the sum of relative variances. The difference consists in considering
the effect of the noise parameters, which is neglected by the A-optimality derived only from the
sensitivity matrix Sm. The F-optimality, on the other hand, is derived from the variance covariance
matrix (Eq. (9)) as

F (d, m̂, b) =
√

trace ((cov(m̂)diag(m̂)−1)T(cov(m̂)diag(m̂)−1)) =

√√√√∑
i

(
σ̂mi
m̂i

)2

, (11)
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where variances σ̂mi involves the effect of all noise parameters b.
The F-criterion has, however, two significant drawbacks. First is the aforementioned approxi-

mative linearisation of the nonlinear model of the experiment. Second concerns the requirement of
a prior guess about the values of the identified parameters m, for which the local derivatives in
Eq. (7) are computed. To overcome the latter drawback, Ruffio et al. (2012) propose more robust
FR-criterion based on the principle of worst case scenario considering for identified parameters
some prescribed feasible domain. In particular, instead of evaluating the F-criterion at one single
point m, they consider a set of possible solutions M given by the so-called central star design
points, which are the points in the center of the considered feasible hypercube and in the center
of all its facets, i.e. M = {m,m+ δmiei,m− δmiei} where vectors ei represent canonical base in
parameter domain. Figure 2 shows the set of possible solutions in case of three identified parameters.

m̄1

δm1

δm1

Figure 2. Set of possible solutions M considered for evaluation of robust FR criterion.

The FR-criterion is then given as maximal value of F-criterion obtained for a set of possible
solutions M , i.e.

FM (d, b) = max
{
F (m, b,d), F (m− δmiei, b,d), F (m+ δmiei, b,d)

}
. (12)

The FR-criterion increases the robustness of the obtained solution w.r.t. prior guess about the
values of identified parameters, but this robustness is still limited as the central star design points
M are only very rough approximation of the feasible domain for the identified parameters M . The
approximation quality can be obviously improved by increasing number of points in the set M
(e.g. full factorial design points involving the corners of the hypercube), but it leads to significant
increase of computational effort due to multiple evaluations of the F-criterion. Here we have to
emphasize that computational complexity of F-criterion consists in evaluation of local derivatives
in Eq. (7), which can be very fast if an explicit analytical expression is available. Otherwise –
and very commonly in finite elements-based models – numerical and much more computationally
demanding evaluation is inevitable.

3.2. Global sensitivity-based robust experiment design

In this contribution, we propose a new formulation of an optimality criterion in robust experiment
design optimisation, which is derived to achieve two goals. First, we aim at increasing the robustness
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416



Acceleration of Robust Experiment Design using Sobol Indices and Polynomial Chaos Expansion

of the criterion by considering whole feasible domain for identified parameters M and not only
its rough approximation based on central star design points. Second, we focus on computational
feasibility in case of complex nonlinear models of material behaviour. To that purpose, we propose
a new criterion based on global sensitivity matrix consisting of Sobol indices derived analytically
from coefficients of polynomial chaos-based approximation of model responses.

So as to build a polynomial chaos expansion, we consider all problem variables (d, b,m) as
random variables with prescribed probability distribution. In case of design variables and material
properties, where only feasible domain is typically prescribed, we consider those variables as uni-
formly distributed within the feasible domain. As the noise variables are often defined as normally
distributed variables, we assume that all the variables can be transformed into the standard normal
variables ξ via linear (in case of normally distributed noise variables) or nonlinear (i.e. exponen-
tial in case of uniformly distributed design variables and material properties) transformation as
(d, b,m) = g(ξ = (ξd, ξb, ξm)). We further assume all the problem variables ξ to be statistically
independent. For an appropriate evaluation of Sobol indices, which correspond to proportional
variances of model response, we need to involve all the relevant variables in our model of the
experiment including measurement errors br. Therefore we rewrite the Eq. (4) as

r(d) = f(d, b,m) , (13)

where vector b = (bd, br). According to Doob-Dynkin lemma (Bobrowski, 2005), the model response
f(d, b,m) = f(ξ) is a random vector which can be expressed in terms of the same random
variables ξ. Since ξ are independent standard Gaussian random variables, Wieners polynomial
chaos expansion (PCE) based on multivariate Hermite polynomials1 – orthogonal in the Gaussian

measure – {Hα(ξ)}α∈J is the most suitable choice for the approximation f̃(ξ) of the model response
f(ξ), see (Xiu and Karniadakis, 2002), and it can be written as

f̃(ξ) =
∑
α∈J

fαHα(ξ) , (14)

where uα is a vector of PC coefficients and the index set J ⊂ N0 is a finite set of non-negative integer
sequences with only finitely many non-zero terms, i.e. multi-indices, with cardinality |J | = R. Of
course, if any other type of standard random variables is more suitable (such as uniform variables),
the Hermite polynomials can be replaced by other type of polynomial orthogonal w.r.t. chosen
probability measure (e.g. Legendre polynomials in case of uniform variables).

Construction of PCE-based approximation is of course much more complex than construction
of the first order Taylor series. Nevertheless, we recall again that the local sensitivities in Taylor
development need to be recomputed for any new choice of design variables within the process of
experiment optimisation. In our approach, the PCE constructions is, however, the computationally
most demanding step, which needs to be done only once, before starting the experiment optimisa-
tion. Computational feasibility can be also achieved by considering low polynomial order in PCE
(however with the risk of insufficient accuracy of the resulting approximation) or by employing

1 We assume the full PCE, where number of polynomials r is fully determined by the degree of polynomials p and
number of random variables s according to the well- known relation r = (s+p)!

(s!p!)
.
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efficient algorithms for computing PC coefficients, see e.g. (Xiu, 2009). One advantage of PCE-
based model approximation is that it is well developed for nonlinear models based on finite element
method. But the true beauty of PCE consists in the possibility of an analytical derivation of global
sensitivity matrix based on Sobol indices, see (Blatman and Sudret, 2010), according to

Sfk,ξi =

∑
α∈Ii f

2
k,αE[H2

α(ξ)]∑
α∈J\{0} f

2
k,αE[H2

α(ξ)]
, (15)

where Ii determines the polynomials involving the terms depending only on ξi and polynomial
degrees of other variables are null, i.e.

Ii = {α ∈ Ns : 0 ≤
s∑
j=1

αj ≤ p, αl = 0⇐⇒ l /∈ (i),∀l = 1, . . . , s}, (16)

and

E[H2
α(ξ)] =

∫
H2
α(ξ)dP(ξ) =

∫
· · ·
∫
s

s∏
j=1

(H2
α,j(ξj))dP(ξ1) · · · dP(ξs) =

s∏
j=1

pα,j !, (17)

where pα,j is a polynomial degree of variable ξj in the polynomial Hα.
As we aim at using the Sobol indices as components of global sensitivity matrix to be used for

formulation of an optimality criteria, we introduce a simple new type of Sobol indices, so-called
additive sensitivity indices (ASI), which consist of the sensitivity indices of the considered variable
and a part of the sensitivity indices corresponding to the variable’s combination with another
variables, these indices are divided by the number of appeared variables to get their particular
part. The formula for the additive sensitivity indices is

S∗fk,ξi =

∑
α∈Ii f

2
k,αE[H2

α(ξ)] +
∑
α∈I∗i

1/n∗
if

2
k,αE[H2

α(ξ)]∑
α∈J\{0} f

2
k,αE[H2

α(ξ)]
, (18)

where n∗i is a number of variables included in the polynomials from the set I∗i defining all the
polynomials involving ξi except the polynomials from Ii , i.e.

I∗i = {α ∈ Ns : 0 ≤
s∑
j=1

αj ≤ p,αi 6= 0 ∧αl 6= 0⇐⇒ l 6= i, ∀l = 1, . . . , s}. (19)

The reason is that original Sobol indices do not involve sensitivity to mixed terms involving multiple
variables, which can be, however, significant and thus we do not want to neglect them. On the other
hand, total sensitivity indices account for mixed terms in every index corresponding to variable
present in the term. It means that sensitivity to these mixed terms will be accounted in the
sensitivity matrix several times. This can lead to increased emphasis to mixed terms in comparison
to terms depending uniquely on a single variable. The proposed ASI thus aim at including the
sensitivity to all combinations of model variables along with their equalised significance. As a
result, the sum of all ASI obtained for a chosen response component is equal to one and the indices
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can be viewed as relative indices providing proportional significance of particular model variables
for the response component.

In Eq. (14), the PCE is constructed also as a function of standardised design variables ξd,
but the sensitivity to those variables is of course not relevant for the experiment design. Design
variables are involved only to allow an immediate analytical reconstruction of PCE as a function of
only material properties and noise variables for given choice of design variables. At each step of an
experiment design optimisation, the design variables ξd in PCE (Eq. (14)) are replaced by specific
values ξχd chosen by the governing optimisation algorithm resulting in simpler PCE given as

f̃ξχd
(ξm, ξb) = f̃(ξ)|ξd=ξχd

. (20)

Based on Eq. (20), we can define the global sensitivity matrix oppositely as a function of chosen
values of design variables ξχd, which were handled as constants so far:

S∗(ξχd) =

 · · · S
∗
f1,ξmi

(ξχd) · · · S∗f1,ξbi (ξ
χ
d) · · ·

· · · S∗f2,ξmi (ξ
χ
d) · · · S∗f2,ξbi (ξ

χ
d) · · ·

...
...

 . (21)

Here, sum of each line equals again to one and particular indices provide again the proportional
significance of particular model variable (given by matrix column) to particular response component
(given by matrix line). As the goal is to maximise the sensitivity to material properties and minimise
the sensitivity to noise variables, from the formulation of global sensitivity matrix given in Eq. 21 it
follows that maximising the sensitivity to material properties results in minimising the sensitivity
to noise variables as by product. Hence, it is sufficient to evaluate only the part of sensitivity matrix
corresponding to material properties given as

S∗m(ξχd) =

 · · · S
∗
f1,ξmi

(ξχd) · · ·
· · · S∗f2,ξmi (ξ

χ
d) · · ·

...

 , (22)

where the sum of indices in each line is smaller or optimally equal to one.
As a last step we need to formulate a scaler-valued optimality criterion as some norm of the sen-

sitivity matrix S∗m. Since the commonly used optimality criteria such as A-optimality, D-optimality,
E-optimality or others are derived for application to local sensitivity matrix obtained in linear design
problem, their meaning is not fully preserved when applied to global sensitivity matrix. Therefore
some further deeper research for suitable optimality criterion in case of global sensitivity matrix
needs to be executed. It is, however, beyond the scope of this paper and we apply those criteria
directly and only compare their behaviour on the illustrative example described in the following
chapter. In particular, we implement these criteria in the following way:

A∗(S∗m) = trace

([
(S∗m)T S∗m

]−1
)
, (23)

D∗(S∗m) = det
(

(S∗m)T S∗m
)
, (24)

E∗(S∗m) = cond
(

(S∗m)T S∗m
)
, (25)
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respectively. And we emphasise that once the PCE-based approximation of model response is
constructed, the criteria are defined as explicit analytical functions of design variables which make
the optimisation of experiment design very computationally efficient. The criteria can of course be
non-smooth or multi-modal, but any evolutionary algorithm requiring high number of iterations
can be successfully applied. Here, in particular, we apply real-valued genetic algorithm GRADE
extended by niching strategy CERAF allowing him to escape from local extremes (Kucerova, 2007).

4. Numerical Example

We use the example of experiment design problem elaborated in (Ruffio et al., 2012) and previously
in (Sawaf et al., 1995). The example deals with two-dimensional linear nonstationary heat problem
govern by energy balance equation

C
∂θ

∂t
= λx

∂2θ

∂x2
+ λy

∂2θ

∂y2
(26)

on the spatial domain given as 0 ≤ x ≤ lx = 5 cm and 0 ≤ y ≤ ly = 5 cm and time domain given
as 0 ≤ t ≤ τ = 60 s, see Figure 3.

y

x

lx = 0.05 m

q = 25000 Wm−2

q
=

25
00
0
W

m
−
2

l y
=

0.
05

m

Initial temperature:

T(0) = 0 ◦C

Steps of measurement:

ti = 1, . . . , τ s

τ = 60 s

Material parameters:

λx, λy, C

Figure 3. Experiment setup.
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The boundary and initial conditions are defined by

−λx
∂θ

∂x
(x = 0) = q, −λy

∂θ

∂y
(y = 0) = q (27)

−λx
∂θ

∂x
(x = lx) = 0, −λy

∂θ

∂y
(y = ly) = 0 (28)

θ(x, y, 0) = 0 , (29)

where q = 25000Wm−2. The specimen consists of an orthotropic homogeneous material with three
material parameters to be identified: two thermal conductivities λx and λy in principal directions
and the thermal volumetric capacity C, i.e.m = (λx, λy, C). Their a priori selected feasible domains
are

λx ∈ [0.3; 0.7] Wm−1K−1 (30)

λy ∈ [3.0; 7.0] Wm−1K−1 (31)

C ∈ [1400000; 1800000] Jm−3K−1 (32)

The temperature is supposed to be measured by three sensors, each performing 60 measurements
with the acquisition period ∆t = 1 s. The aim of the experiment design problem is to find the
optimal positions of the three sensors, i.e. d = (dx1, dy1, dx2, dy2, dx3, dy3).

Once the experiment is realised, its parameters will not be exactly at designed values and thus
we assume several parameters as random variables to account for the underlying noise. Therefore we
consider following noise variables within the process of experiment design optimisation, see Figure
4:

− Heat flux density q is supposed to be constant during the measuring time period, but its
mean value is perturbed by the normally distributed noise bq with the zero mean and standard
deviation σq = 50 Wm−2.

− Temperature sensors provide results disturbed by additive Gaussian measurement noise br with
zero mean and standard deviation σr = 0.1◦C.

− Sensors are supposed to be placed at designed positions d which are subject also to Gaussian
noise bx with zero mean and standard deviations σxi = σyi = 0.5 mm.

Ruffio et al. (2012) profits from the simplicity of the elaborated example consisting in possibility
to derive the model response and local sensitivity matrix analytically. On the other hand, we
want to present more realistic scenario, where experiment simulation involves finite elements-
based discretisation. First, we transform all the involved variables into standard Gaussian variables
(ξm, ξd, ξbq , ξbx , ξbr). Then we write the discretised model as

A(ξm, ξbq)u = q (33)

and we construct its PCE-based approximation in every response component as

ũ(ξm, ξbq) =
∑
α∈I

βαψα(ξm, ξbq) . (34)
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y

x

Lx = 0.05 m

q = 25000 Wm−2

q
=

25
00
0
W

m
−
2

L
y
=

0.
05

m

(dxi, dyi) +(bxi, byi)

+bq

+
b q

rj+br

Figure 4. Design and noise variables considered in experiment design optimisation problem.

To obtain the temperature values corresponding to k-th sensor, we have to determine a specific
finite element, where the sensor is located, and the polynomial expansions in its nodes

ũk(ξm) = (ũ1(ξm), ũ2(ξm), ũ3(ξm))T , (35)

see Figure 5. By evaluating shape functionsNk(dk(ξd)) and their gradient Bk(dk(ξd)) = ∇Nk(dk(ξd))

u1

u2

u3

A2

(dx; dy)

bx

by

Figure 5. Scheme of a triangular finite element with the interior sensor at coordinates (dx + bx, dy + by).

(with ∇ = (∇x,∇y)T) at the designed position of a sensor dk = (dx, dy) as

Nk(dk(ξd)) = (N1(dk(ξd)), N2(dk(ξd)), N3(dk(ξd))) =

(
A1(ξd)

A
,
A2(ξd)

A
,
A3(ξd)

A

)
(36)
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we obtain an explicit function for model response component corresponding to chosen position of
sensor including all relevant noise variables as

f̃k(ξm, ξd, ξb) = Nk(ξd)ũk(ξm) + bd(ξb) [Bk(ξd)] ũk(ξm) + br(ξbr) =

= [Nk(ξd) + bd(ξb) [Bk(ξd)]] ũk(ξm) + br(ξbr) , (37)

which is in fact also a polynomial expansion and can be written as

f̃k(ξm, ξd, ξb) =
∑
α∈I

βαψα(ξm, ξd, ξb) . (38)

In this polynomial expansion, we treat the design variables as constants and get an explicit formu-
lation for global sensitivity matrix according to Eq. (22), which can be then quickly evaluated at
every iteration of the experiment design optimisation process.

5. Results

As the first numerical study we compare the performance of optimality criteria defined in Eqs.
(23) – (25) and the A∗, D∗ and E∗-optimal designs are plotted in the first three columns of Table
I, respectively. All these designs are selected as best among the set of local optima determined
by GRADE+CERAF algorithm. Last two columns are occupied by two best locally optimal solu-
tions presented in (Ruffio et al., 2012). All experiment designs are employed in a single simulated
experiment, where true values of material parameters are given according to (Ruffio et al., 2012) as

λ∗x = 0.6 Wm−1C−1 ,

λ∗y = 4.7 Wm−1C−1 ,

C∗ = 1700000 Jm−3C−1 .

In the local sensitivity-based approach, an initial guess about the values of material properties
is required for computing the local sensitivities. This guess again according to (Ruffio et al., 2012)
is

λx = 0.5 Wm−1C−1 ,

λy = 5.0 Wm−1C−1 ,

C = 1600000 Jm−3C−1 .

In order to compare the quality of particular experiment designs, an inverse analysis is performed
in a simplified – linearised – way as described in Section 2 and parameter estimates along with their
variances are computed according to Eqs. (8) and (9). Resulting relative variances in parameter
estimates obtained for particular experimental designs are written in Table I.

By comparing these results we may conclude that the applied optimality criteria do not differ
too significantly. Especially A∗- and D∗-optimality provide very similar results. The E∗-optimality
outperforms the others by providing almost half of the variances obtained by A∗- and D∗-optimality.
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Table I. Comparison of experimental designs within a single inverse analysis.

A∗(S∗
m) D∗(S∗

m) E∗(S∗
m) F (d, m̂, b):U1 F (d, m̂, b):U2

σλx/λx 19.1% 20.2% 12.1% 4.6 % 8.0 %

σλy/λy 16.2% 13.7% 5.6% 7.5 % 2.9 %

σC/C 10.3% 10.4% 5.1% 2.9 % 2.0 %

Nevertheless, the E∗-optimality does not outperform the results obtained by Ruffio et al. using the
problem linearisation and local sensitivity matrix.

One possible explanation is that the true values of the material properties are very close the
starting guess used for computation of local sensitivities. Therefore we have performed a set of 25
simulated experiments for changing values of material properties on a regular grid 5x5x5 within
the feasible domain. For each experiment, the same inverse analysis was executed as in the first
example and minimal and maximal values of estimated parameter variances are listed in Table II.

Table II. Case study: min-max.

σλx/λx σλy/λy σC/C

F (d, m̂, b):U2 7.9 – 31.9 % 1.7 – 6.3 % 1.53 – 4.3 %

A∗(S∗
m) 17.6 – 22.0 % 15.3 – 24.2 % 8.63 – 17.3 %

D∗(S∗
m) 18.5 – 25.2 % 10.5 – 20.2 % 8.55 – 16.4 %

E∗(S∗
m) 10.6 – 14.4 % 2.5 – 6.2 % 3.26 – 7.2 %

Here it can be already concluded that the E∗-optimal design has a comparable quality to U2-
design obtained by Ruffio et al. and it still outperforms the A∗-optimal and D∗-optimal designs.

6. Conclusions

The proposed contribution presents a new method for designing robust and optimal experiments,
which is developed with regard on its practical applicability to finitThe proposed contribution
presents an original method for designing robust and optimal experiments, which is developed with
regard on its practical applicability to finite element-based models and its computational feasibility.
The method is based on an explicit formulation of global sensitivity matrix, which constituents are
defined as Sobol indices derived analytically from the polynomial chaos-based approximation of
model response. Employing higher order polynomials in model surrogate allows to account for
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the nonlinearity of the model as well as for the prescribed large feasible domain of the material
properties to be estimated. No prior expert guess about specific parameter values is needed as it
is in the case of local sensitivity-based procedure described in (Ruffio et al., 2012). Construction
of the higher order polynomial surrogate is of course computationally intensive task. Nevertheless,
development of efficient computational tools for polynomial chaos-based uncertainty propagation
is a scientific topic still atracting the attention of many researchers pushing forward the process in
this field. Moreover, the construction of the PCE-based surrogate needs to be carried out only once
before the actual start of the experiment design process. During the optimisation, only very fast
evaluation of Sobol indices defined explicitely from the PC coefficients is needed at each iteration
of the optimisation process.

The proposed method is compared here with the local sensitivity-based method on a simple
example of nonstationary linear heat transfer. It is shown that the both method provides very
similar values of variances of parameter estimates. The comparison is now, however, very modest.
We suspect that the model of the experiment on the feasible domain of material properties is here
only mildly nonlinear and thus the robustness of the proposed method cannot be fully appreci-
ated. Moreover the comparison is performed using the linearised inverse analysis, while full Monte
Carlo-based inverse analysis would be also more appropriate to verify the quality of the obtained
experimental designs. These topic will be thus next steps in our future work.
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Abstract: This paper deals with double-looped reliability-based design optimization (RBDO), in
which the system reliability is assessed within the inner loop and a designing process is performed in
the outer loop. A common approach expressed as single-objective optimization is transformed into
a multi-objective case providing results as an approximation of the Pareto front composed of the
compromising solutions between cost and reliability. The double-loop formulation of RBDO provides
the most accurate approximation of the Pareto front but is computationally demanding even if
advanced simulation techniques are used for rare failure events. Nowadays, a Subset simulation is
a popular method to obtain an estimate of small failure probabilities. Despite the reduction in
evaluation time using a Subset simulation when compared to a crude Monte Carlo method, the
computational effort is still high with a complex model as a performance function, e.g. a finite
element model. The computational model can be replaced by its surrogate in order to reduce the
computational costs. This meta-model fits the responses evaluated by the original model for the
predetermined data, so called a Design of Experiment (DoE). Since the design variables change with
every iteration and a meta-model is utilized for a reliability assessment, the meta-model is trained
only in the vicinity of the relevant design variable which makes the meta-model computationally
faster and more precise. The DoE is updated by selected points from subset simulation samples with
respect to two criteria: first, beneficial samples are located in the vicinity of the limit state, which
divides the space into a safe region and a failure domain, and second, these samples should also be
placed in the sparsest position of the DoE. The described method is illustrated on a classical RBDO
benchmark with two objective functions; the first objective is a cost function to be minimized, the
second objective is a structural reliability expressed by a reliability index to be maximized. The
quality is assessed by comparison to an asymptotic sampling and a Monte Carlo simulation all with
responses obtained by an original model and local meta-models.

Keywords: multi-objective optimization, reliability-based design optimization, radial basis func-
tions meta-models, non-dominated sorting genetic algorithm II, asymptotic sampling, subset sim-
ulation.

1. Introduction

Structural optimization is a process that seeks the best design under some predefined constraints.
A deterministic model is usually unrealistic due to the uncertain inputs such as material properties,
a structural topology, loadings etc. The optimal design with deterministic variables often terminates

c© 2016 by authors. Printed in Germany.
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at a boundary between the failure domain and the safe domain and even a small perturbation in
inputs can lead to a fatal failure. For that reason, the model uncertainties are introduced; the
parameter uncertainties are associated with the input data whereas the structural uncertainties
express that the model need not clearly describe the physics of the problem. Optimization under
uncertainties looks into two main tasks; the first task called robust design optimization deals with the
everyday fluctuations in inputs and provides a design with a minimum price that is less sensitive
to small perturbations in inputs; the second task known as reliability-based design optimization
concentrates on worse-case scenarios and offers an economical design with large safety.

In reliability-based design optimization (RBDO), the most challenging task is to evaluate a prob-
ability constraint or a probability objective. For such a reliability assessment, it is required to
evaluate a structural response several times with different settings of uncertain parameters and
design variables, which is the most computer power demanding part of the problem. It is possible
to evaluate a probability of failure analytically only for special types of problems, e.g. by Gauss
quadrature approaches, Laplace Approximation approaches, etc., which is limiting for RBDO ap-
plications. An exact computation is impractical (Aoues and Chateauneuf, 2010). Approximation
techniques such as a First-order reliability method (FORM) (Hasofer and Lind, 1974), and sim-
ulation techniques such as crude Monte Carlo (MC) (Metropolis and Ulam, 1949) and variance
reduction techniques are commonly used. FORM is very often preferred for its speed and relatively
few necessary evaluations of the structural response. The drawback is that the obtained reliability
assessment is inaccurate for low probabilities of failure and for highly non-linear problems. There
are two preferred formulations of FORM in RBDO, that proceed from a key idea that a reliability
index is the shortest distance between the most probable failure point (MPFP) and the origin
in a standard normal space and therefore it is an optimization task. First, the reliability index
approach (RIA) (Enevoldsen and Sørensen, 1994) is a classical reliability formulation, in which
the quadratic form of MPFP is minimized such that a limit state function value is less than or
equal to a predefined threshold value. Second, performance measure approach (PMA) (Tu, Choi
and Park, 1999) is defined as an inverse approach, in which limit state function is minimized such
that the quadratic form of MPFP is equal to a predefined threshold value. This formulation is
more stable because it is easier to minimize a complicated objective function subject to a simple
constraint. Since the expansion of a computing power, the simulation techniques are becoming
popular in RBDO, such as Monte Carlo simulation (Papadrakakis, Lagaros and Plevris, 2005),
a subset simulation (Valdebenito and Schuüeller, 2010) or an importance sampling (Beaurepaire et
al, 2013).

Reliability-based design optimization can be formulated by two linked loops. An optimizer
provides a design in the outer loop, for which a probability of failure is evaluated in the inner
loop. The double-looped procedure allows a very accurate safety appraisal of each design without
any kind of approximation. However, this formulation suffers from large computational demands
if a classical Monte Carlo method is used. Fortunately, advanced simulation techniques such as an
asymptotic sampling (Bucher, 2009) and a subset simulation (Au and Beck, 2001) can be used for
the reliability assessment and the accuracy can be almost maintained with the drastic computational
effort reduction.

Although the speed-up is achievable with the advanced simulation techniques, a structural re-
sponse can be still quite computationally demanding and an approximation of an original structural
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model has to be implemented. The original model can be replaced by some model of the original
model that has a very similar behaviour; however, it is less time consuming to evaluate. Those
models of models are called meta-models or surrogate models and they require just few evaluations
of the costly original function. Those evaluations are then used to create the meta-model. Proper
locations for an original model evaluation (called support points) have to be chosen properly usually
by a Design of Experiments (DoE) (Montgomery, 1997; Janouchová and Kučerová, 2013) with
support points usually uniformly distributed in the whole design space. The accuracy of a meta-
model is dependent on several factors such as a number of dimensions, non-linearity of the structural
response model, a number of support points, etc.

The initial DoE can be created by as many support points as many times the original model
can be evaluated or the initial DoE can be sparse and adaptively improved (updated) in interesting
locations, subsequently. A type of an update is dependent on a purpose of the meta-model within
the meaning of optimization. A meta-model replacing an original model in an objective function
is updated differently from the meta-models replacing original models in constraints. For a meta-
model utilization in a reliability assessment in RBDO, several updating methods are published in
the literature such as Efficient global reliability analysis (Bichon et al, 2008) or Active Kriging
using Monte Carlo simulation (Echard, Gayton and Lemaire, 2011). These updating methods are
strictly oriented to Kriging meta-models and their error estimate, however, Kriging is not always
the best option for the original model substitution (Jin, Chen and Sompson, 2001).

For a reliability assessment in RBDO, the most important region in any model is the boundary
between the safe and the failure domain, called a limit state. A good meta-model should be the most
precise especially around this boundary. If an initial DoE is sparse and it is subsequently adaptively
refined, new support points should be placed partly in the vicinity of the limit state, partly in
the location with the highest sparsity of DoE. These requirements can be formulated into multi-
objective optimization with two objectives to search an optimal position of the new support points
in DoE. The first one is the distance to the limit state; the second one is the space-filling property
of the DoE, which is optimized by maximizing the minimal interpoint distance (i.e. the Maximin
approach). The optimization routine runs repeatedly and obtained Pareto-optimal solutions are
added into the existing DoE to get the updated meta-model, see more details in (Posṕı̌silová,
Myšáková and Lepš, 2013). The benefits of this method are that this procedure is independent on
a meta-model type, one global meta-model covers the whole design space and it can be treated as the
original model, the update is run in parallel, and the DoE is updated with several support points
at the same time. The main drawback is that the whole design space is large and the number
of support points in DoE has to be enourmous to obtain the similar accuracy with the original
model. It has a consequence in needed computational effort; since more samples are used for the
interpolating meta-model construction, the more computational effort is necessary. In (Posṕı̌silová,
and Lepš, 2015), we started to use several local meta-models instead of one global meta-model.
Small meta-models are trained for every single design of RBDO. These meta-models are built from
samples that are in the vicinity of the proposed design by the optimizer and therefore are relevant
to that proposal. Evaluations of these tiny meta-models are very fast and can be repeated as many
times as necessary by the sampling method with no limitations. The main drawback of the proposed
methodology was that the chosen reliability assessment method, an asymptotic sampling, needed
larger meta-models because of sequentially scaling random variables over the standard deviation

REC 2016 - A. Posṕı̌silová and M. Lepš
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to predict a reliability index. If selected points in DoE for meta-model construction are too few,
an asymptotic sampling requires an extrapolation of the meta-model and the resulting reliability
assessment is not trustworthy. This paper deals with the incorporation of another reliability as-
sessment method, a subset simulation, into RBDO enhanced by local meta-models introduced in
(Posṕı̌silová, and Lepš, 2015). We expect the possibility of construction of smaller meta-models for
the reliability evaluation and following speed-up of finding the approximation of the Pareto front
in RBDO.

2. Methodology

2.1. From Single- to Multi-objective Double-looped Reliability-based Design
Optimization

Reliability-based design optimization provides a design that is economical as well as reliable in
presence of uncertainties. Many formulations of objective functions have been proposed, however,
minimization of the total cost of the structure is a frequently used model comprising the initial
cost together with the failure risk. This failure risk is defined as the cost of failure multiplied
by the probability of failure and because of obstacles in assessing monetary values to all failure
consequences (e.g. placing a monetary value on human life) (Frangopol, 1985), an alternative
formulation is possible as

min
d∈D

C(d), (1)

s. t. Hi(d) ≤ 0, i = 1, . . . , ne, (2)

βj(x,d) ≥ βtolj , j = 1, . . . , np. (3)

The objective function C(·) is to be minimized with optimal values of design variables arranged
in a vector d that contains deterministic variables or probability distribution parameters (e.g. the
mean of random variables). Design variables are chosen from the design space D. All deterministic
constraints Hi(·) has to be less than or equal to zero where i is from 1 to ne and ne is the total
number of constraints. A generalized reliability index βj(·) has to be greater than or equal to
a prescribed tolerable threshold βtolj ; generally, β is defined as an inverse cumulative distribution

function of the standard normal distribution β = Φ−1(1− pF ), where pF is a probability of failure.
The influence of uncertain parameters arranged in a vector x is taken into consideration in these
constraints. A number of events np is equal to one in the simplest cases.

Multi-objective formulation of the reliability-based design optimization task provides larger room
for a decision maker, whereas single-objective formulation forces a researcher to constrain the search
space before an optimization procedure is started. The multi-objective formulation addressed here
is stated as follows:

min
d∈D

C(d), (4)

max
d∈D

βj(x,d), j = 1, . . . , np, (5)

s. t. Hi(d) ≤ 0, i = 1, . . . , ne. (6)

REC 2016 - A. Posṕı̌silová and M. Lepš
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The reliability constraint in a single-objective formulation is freed to an objective function in
a multi-objective formulation. Together with the first objective function C(·), the multi-objective
formulation contains two conflicting objectives now and the trade-off between the structural safety
and the cost has to be find as the Pareto front from which the most preferable solution is identified
afterwards by a decision maker.

A double-loop approach deals with a designing process in an outer loop; an optimizer proposes
a combination of design variables d(k) in each optimization step k and deterministic constraints
Hi(d

(k)) together with reliability indexes βj(x,d
(k)) are evaluated. A reliability assessment is ap-

praised for each combination of design variables d(k) in an inner loop to obtain βj(x,d
(k)). The

inner loop consists of Ns evaluations of a structural response g(x(s),d(k)) with different values of
random variables x(s), with s = 1, . . . , Ns.

2.2. Subset simulation

A subset simulation (Au and Beck, 2001) is a novel methodology that is based on a formulation of
the failure event F as an intersection of the intermediate failure events Fm. The rare event problem
is then reformulated as series of more frequent events that are easier to solve. The probability of
failure is as follows

pF = Prob[F1] ·
M∏

m=2

[Fm|Fm−1]. (7)

The failure probability of the first intermediate domain is evaluated by a classical Monte Carlo
method with hundreds of samples N . These samples are sorted in an ascending order and a limit
state function y = g(·) is relaxed such that Prob[F1] is equal to a predefined value p0. The limit state

function value of the (p0 ·N)th sample is a relaxed threshold y?1 in sorted Monte Carlo samples. The
first (p0 ·N) samples are used as seeds for the simulation of samples from conditional probabilities
by a Markov chain Monte Carlo (MCMC) with a modified Metropolis algorithm. In each level m,

samples obtained by MCMC are sorted and first (p0 ·N) samples serve as seeds in the (m + 1)th

step together with a proper relaxation of the limit state function by value y?m. The last level M is

reached if the failure probability of the Mth step with the original limit state is greater than p0;
in other words, if the y?M changes its sign.

2.3. Radial basis functions model

Radial basis functions model (RBF) approximates a complicated true function as a sum of easier
basis functions that are symmetrical and centered on a set of support points (Forrester, 2008). For
noise-free data, the model is

ŷ(x) = wTψ =

nc∑

i=1

wiψ(||x− c(i)||), (8)

where w is a weighting vector, ψ is a vector of length nc holding evaluated basis functions on
Euclidean distances between the prediction x and centres of basis functions c. Basis functions can be
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fixed or parametric and are chosen by user according to the type of the original function; frequently
used basis functions are Gaussian, Hardy multiquadrics, Inverse multiquadrics, Cn Matérn etc. We
use Gaussian parametric bases

ψ(r) = exp

(−r2

2σ2

)
(9)

where parameters σ are found by an optimization algorithm. Centres of basis functions can be
made identical with the Design of Experiments c(i) = x(i) and parameters in a weighting vector
are evaluated from the system of linear equations Ψw = y where each element of Gram matrix
Ψ is Ψi,j = ψ(||x(i) − x(j)||), i, j = 1, . . . , n; n is a number of points in the DoE, y is a vector of
responses evaluated with the original model or function and w is again a weighting vector.

2.4. Adaptive retrieval of new support points

A whole methodology is depicted in Figure 1 and it is taken over from (Posṕı̌silová, and Lepš, 2015).
First of all, primary Design of Experiment Q is constructed. In our previous work (Posṕı̌silová,
Myšáková and Lepš, 2013), we have found out that Halton sequences (Kocis, 1997) are efficient, fast
and well distributed, thus we used them for every uniform design in this work. The true response
function g(·) that should be computationally very expensive in real-life optimization problems
(e.g. FEM simulation) is used to calculate responses G for DoE Q. Therefore the DoE should be
relatively sparse to save up the computational time. This data-set is saved as Dataset 1 [Q,G] for
the following meta-modeling. The optimizer proposes one individual d(k) or a set of individuals (in
case of population algorithm) in each generation k. In this paper, every individual has a meaning of
the mean of a random variable. For each individual, deterministic functions as well as the reliability
assessment are evaluated. Deterministic functions are not so computationally problematic for the
most cases and if so, they are calculated only once for each individual. The reliability assessment,
however, complicates the computational speed. Since we use a sampling approach for probability of
failure estimation, we calculate the response function repeatedly. The response function is therefore
substituted by a surrogate model, that is uniquely built by S (·) for each individual d(k) as g(·),
thus every individual has its own meta-model and individuals do not share them. The meta-model is
set-up from DoE data-set points Q that are nearby the individual d(k); the selection of the dataset

is labeled as Qd(k)
. We use the k-nearest neighbors algorithm1 (Friedman, 1977) for the proximity

assessment where only the prescribed number of points have to be specified. We found out that one
tenth of the all DoE points is sufficient but this setting vary from problem to problem. However,
the tenth is a good initial guess. The estimation of the probability of failure pF (d(k)) as well as
a value of the cost function C(d(k)) are given back to the optimization algorithm. In case that we
do not want to utilize the knowledge about the problem provided by the meta-model and reflect it
into the DoE, the optimization algorithm will continue up to the Nk step in the described way.

The reliability simulation method samples around the design variable and the reliability assess-
ment needs the response in these samples. The difference between the response and the limit value
of the admissible occurrence is called limit state function (LSF) in this paper. The most substantial
part of the limit state function is the limit state, i.e. the frontier between the safe and failure region,

1 We use knn-search implemented in Matlab.
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Figure 1. Schematic representation of a double-loop RBDO problem extended to the meta-model update.

REC 2016 - A. Posṕı̌silová and M. Lepš
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sometimes called the limit state surface. The meta-model has to be very exact here. Generally, the
accuracy of the meta-model is increased by addition of new samples into the DoE Q including their
“true” responses of the original model. Since the original model is still not the solution of the real
life problem, we use the quotation marks here. However, this response is more reliable than the
meta-model response. New samples to DoE have to be added into the vicinity of the limit state;
this is the first criterion. We already know the meta-model responses of the Monte Carlo samples
and therefore we choose those new updating points from the Monte Carlo sample set. Every single
sample from the reliability sampling method and its response value are therefore stored into X (k)

and G(k)
, respectively. These new samples should be also placed into the area with the deficient

knowledge to uncover more possible limit states. For this second criterion, the miniMax metric m
is used, which is the distance to the closest sample in sense of a diameter of the maximum inscribed
hypersphere, and it is evaluated and stored in M for all Monte Carlo samples X (k) with regard
to the original DoE Q. These two criteria are antagonistic, therefore the Pareto front P0 of the
best incomparable solutions is calculated. It is possible to update DoE with the Pareto set (the
corresponding coordinates in the design space for the Pareto front), however, the response of the
meta-model has not to be accurate enough. Therefore, new meta-model is made for each point in
the Pareto set so that the knn-search is carried out again and the one tenth of the closest points
is chosen for the meta-model construction. These meta-models are therefore used to get a better
meta-model response for the Pareto set. Since the distances to the limit state were recalculated,
the Pareto front has to be found again as P1. In case that the meta-modeling response was good
enough, the Pareto front P1 is the same as previous P0. In other case, the Pareto set is reduced.
The first point of the Pareto set P1 is added into the final DoE Q and the “true” model response
g(·) is calculated. Since the DoE is changed, the miniMax metric is again recalculated. The second

criterion for the update is changed, therefore the new Pareto front Pj has to be found. If the jth

point of the P1 is still in the Pareto front Pj , it is embedded into the DoE Q and the “true” response

for this sample is computed. The DoE is therefore extended in every kth step of the optimization
algorithm.

3. Examples

This example utilizing mathematical functions was chosen to demonstrate the efficiency of the pro-
posed methodology. The study of the single-objective optimization behaviour utilizing a surrogate
model was carried out by (Lee and Jung, 2008) and the study of the decoupling approach by (Chen
et al, 2013). The optimization problem of the original single-objective optimization problem is to

min f1 = (µX1 − 3.7)2 + (µX2 − 4)2 (10)

s.t. g1(X) = −X1 sin(4X1)− 1.1X2 sin(2X2) (11)

g2(X) = X1 +X2 − 3 (12)

Stochastic variables X1 and X2 have a normal distribution with the mean values µX1 and µX2 ,
respectively, and both have a standard deviation equal to 0.1. They are statistically independent.
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Figure 2. Optimization progression for 50 individuals and 50 generations. Every generation has a different shade
depicted in the color bar on the right; the darkest blue color is used for the initial generation, claret wine for the
very last generation. The Pareto front was constrained from both sides for β index from 0 to 5.5 that correspond to
a failure probability 0.5 and approx. 2 · 10−8, respectively. Those solutions that did not fulfilled those constraints are
depicted with empty circles. The magenta cross is the single-objective optimum found by (Chen et al, 2013), which
lies on the Pareto front.

Design variables are represented by both mean values µX1 and µX2 . They are in ranges of 0 ≤
µX1 ≤ 3.7 and 0 ≤ µX2 ≤ 4, respectively.

This single-objective optimization problem can be reformulated as a multi-objective one consid-
ering minimization of the first objective function and maximization of the reliability index of the
given mathematical problem

min f1 = (x1 − 3.7)2 + (x2 − 4)2 (13)

max β (14)

considering LSF min

(

−x1 sin(4x1)− 1.1x2 sin(2x2)
x1 + x2 − 3

)

(15)

0 ≤ x1 ≤ 3.7, 0 ≤ x2 ≤ 4. (16)

The algorithm utilizing local meta-models described in the previous section was used to obtain
a final approximation of the Pareto set and the Pareto front. We use Non-dominated sorting genetic
algorithm II (Deb, 2002) as a basis multi-objective algorithm with a simulated binary crossover op-
erator (Deb, 1995), a Gaussian mutation operator and a tournament selection operator; probabilities
of the operator utilization for creating offspring populations are 0.9, 0.5 and 1, respectively. The
number of individuals was set to 50 as well as the number of total generations. The progress of the
optimization is depicted in Figure 2. The convergence to the approximated the Pareto-optimal set
and front is relatively fast; 20 generations would be sufficient from total 50 generations.

These approximations are compared with resulting the Pareto sets and the Pareto fronts gained
by different computational methods in Figure 3. The squares symbols serve for visualisation of
meta-model utilization while dots symbols are used for the original analytical function application.
The analytical function was affordable for reliability-based design optimization in this benchmark
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Figure 3. Comparison of Pareto set approximations (left) and Pareto front approximations (right) by several com-
putational methods. The results without use of any meta-models are depicted by dots; an Asymptotic sampling
(AS, blue dots), a Subset simulation (SS, red dots), and a Monte Carlo simulation (MC, orange dots) were used to
approximate the reliability index. The results with use of local meta-models are drawn by squares; an Asymptotic
sampling (claret squares), and a Subset simulation (green squares) were again utilized to approximate the reliability
index. Crosses represent single objective optima found in literature; the pink cross is for the optimum taken from
(Chen et al, 2013), the violet cross represents the optimum from (Lee and Jung, 2008), and the blue cross depicts
the optimum taken from (Dubourg, 2011).

because its evaluation is fast; in case that a structural response is evaluated via a finite element
model, a meta-model utilization is inevitable for reasonable results. The orange dot symbols repre-
sent an approximation that should be the most precise since a Monte Carlo simulation together with
the original analytical function was used. A setting for the number of samples for a Monte Carlo
method was contingent on the failure probability pre-evaluation pF,AS by an Asymptotic sampling.
This probability pF,AS was then used to predict a number of samples for a Monte Carlo simulation
100/pF,AS with a coefficient of variation approximately 10%. Since we used Halton sequences instead
of an ordinary pseudo-random number generator, the predicted coefficient of variation should be
even smaller. The visible distinction between individual methods is particularly in the upper part
of the Pareto front for higher numbers of a reliability index; up to β-index equal to 3, there is no
dramatic difference between individual reliability methods as well as between the analytical model
and the meta-model utilization. The cross symbols serve for visualisation of single-objective optima
found in literature; the original problem was restricted to the reliability index equal to two.

If the analytical model is compared with meta-models utilization and the same reliability as-
sessment method is used, an asymptotic sampling variant has the largest discrepancy in the upper
part of the Pareto front. The principal problem is in an interconnection between the asymptotic
sampling and local meta-models. Large reliability indices require larger number of scaling steps of
standard deviations and therefore a meta-model has to be more complex or it has to extrapolate.
A problematic situation is depicted in Figure 4 on the left. Almost the whole design space is included
in the sampling space for a β-index prediction and since only a small neighbourhood of the mean
values was selected to construct a local meta-model, the resulting reliability index is unreliable.
Therefore, a subset simulation was employed together with local meta-models since it makes use of
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Figure 4. Comparison of sampling methods for a reliability assessment in the same mean values of variables,
µX1 = 2.74 and µX2 = 2.71 (the black cross). The bold solid line is the limit state, black dashed circles mark
the mean values plus one, two, and three standard deviations, respectively. An asymptotic sampling (left) needed
standard deviation scaling 13 times, samples with the same standard deviation are depicted with the same colour.
A subset simulation (middle, right) shows instability in selection of sampling directions. Colours of samples serve for
differentiation of levels as well as with their seeds. Coloured dashed contours distinguish different y?m threshold levels.
Each subset simulation assessment comprised eight levels.

narrower neighbourhood for meta-model training in which the only problem is the instability of the
selection of the subsequent random walks directions, see Figure 4 in the middle and on the right.
A subset simulation method proceeds in the steepest descent direction. A fixed portion of samples
is taken from samples generated in the previous step and sorted in the ascending order serves for
initial seeds in a random walk. Since a pseudo-random generator sampler does not always hit all
possible directions to all most probable failure points, some important region can be omitted. This
is again illustrated in Figure 4 middle and right, where two independent runs of a subset simulation
with the same setting are shown.

The comparison of adaptively added support points into DoE between subset simulation samples
and asymptotic sampling samples is depicted in Figure 5 by grey triangles. A subset simulation
(Figure 5 right) uses narrower surroundings around the mean values for the reliability index predic-
tion than an asymptotic sampling. An optimization procedure is moving mostly inside the safe space
(depicted by orange and red contours) with the individuals representing mean values of random
variables in latter generations; this is the reason for so many points added into the safe domain
and around the limit state utilizing a subset simulation samples. On the other hand, an asymptotic
sampling utilizes a wider space for the β-index prediction than a subset simulation (Figure 5). It
is problematic for local meta-models but profitable for exploration of possible limit state locations.
An update utilizing a subset simulation samples omitted the part of the limit state on the right of
the design space where a potential optima can be placed. Nevertheless, the exploration by a subset
simulation samples was sufficient for this benchmark and resembling Pareto sets were obtained
with both simulation methods. The only but crucial difference is in β-indices approximations;
a subset simulation using local meta-models seems to be more stable than an asymptotic sampling
as depicted in Figure 3.
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437
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Figure 5. The design space after optimization. An initial Design of Experiments (DoE) is depicted by blue dots
whereas adaptively added points to DoE are represented by grey triangles. The red squares (left) or green squares
(right) serve for the Pareto set approximation selected from the last generation of NSGA-II; a single objective
optimum taken from (Chen et al, 2013) used for a comparison is depicted by the magenta cross. The limit state
function serves only for illustrative purposes, it was evaluated only in points of DoE. Two reliability assessment
methods are compared; an Asymptotic sampling (left) enables to explore the design space in breath whereas a Subset
simulation (right) concentrates samples added to DoE more narrowly around the individuals from an optimization
algorithm.

4. Conclusions

Reliability-based design optimization searches for a design that is both economical and reliable.
Since reliability index approximation requires plenty of structural responses computations, the most
challenging task in RBDO is to evaluate a probability constraint or a probability objective. Even
if any advanced simulation method is used to predict a reliability index, a meta-model utilization
is necessary for designing real-life structures. One global meta-model for the whole design space
needs an enormous number of support points to get a response similar to the original model. If more
samples are used for the interpolating meta-model construction, the more computational effort is
necessary and, moreover, numerical problems can be expected. A candidate design optimum usually
does not need a whole design domain to predict safety of this design, and therefore local meta-
models can be incorporated to speed-up an optimization of the designing process. We utilized two
reliability assessment sampling methods together with local meta-models; an asymptotic sampling
in our previous work (Posṕı̌silová, and Lepš, 2015) and a subset simulation in this paper. Both of
these methods approximate a reliability index and a probability of failure and both methods are
dependent on the shape of the limit state in the vicinity of the most probable failure point. In an
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asymptotic sampling, the higher the predicted reliability index is the wider neighbourhood of mean
values is employed and thus the larger local meta-model is necessary. For that reason, a subset
simulation requiring narrower neighbourhood for a β-index prediction is more profitable together
with local meta-models. The resulting Pareto fronts obtained with the original response model and
with local meta-models almost overlap themselves, which implies that the meta-models provide
sufficient accuracy of response values with beneficial speed-up of a response evaluation.

Another speed-up can be obtained via parallel evaluations. Since the proposed method is multi-
level, partitioning is also available in different levels. Although we use a Non-dominated sorting
genetic algorithm II, the algorithm is still population-based and reliability indices can be evaluated
for each individual in parallel. Several different strategies can be used such as global paralleliza-
tion, coarse grains, and fine grains, which differ in communication inside a population (Alba and
Tomassini, 2002). The partitioning in population level is inherent but load balancing is complicated
because of different computational efforts for different values of reliability indices. Since we use
sampling methods for a reliability assessment, these samples can also be evaluated in parallel.
A subset simulation utilizes a modified Metropolis algorithm with plenty of short Markov chains. All
these chains can be evaluated again in parallel. Since each level in a subset simulation is dependent
on the previous level exclusive of the first level, the partitioning via levels is not straightforward.
An asymptotic sampling uses several Monte Carlo simulations with diverse standard deviations
of random variables in Gaussian space. All these Monte Carlo levels contain a small number of
samples. The minimum number of the levels is set up in advance, therefore the partitioning is
possible in whole Monte Carlo simulations. The number of samples in every Monte Carlo level is
known in advance as well and therefore, every Monte Carlo sample can be evaluated in parallel.
The partitioning inside a sampling reliability assessment method is beneficial since the load to each
threat can be decomposed with equal modular unit.
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Application of Voronoi Weights in Monte Carlo Integration

with a Given Sampling Plan
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Abstract: The standard way to numerically calculate integrals such as the ones featured in
estimation of statistical moments of functions of random variables using Monte Carlo procedure
is to: (i) perform some sampling from the random vector, (ii) perform an approximation to the
integrals using averages of the functions evaluated at the selected sampling points. If the Nsim

points are selected with an equal probability (with respect to the joint distribution function) such
as in Monte Carlo sampling, the averages use equal weights 1/Nsim. The problem with Monte Carlo
sampling is that the estimated values exhibit a large variance due to the fact that the sampling
points are usually not spread uniformly over the domain of random variables. One way to improve
the accuracy would be to perform a more advanced sampling.

The paper explores another way to improve the Monte Carlo integration approach: by considering
unequal weights. These weights are obtained by transforming the sampling points into sampling
probabilities (points within a unit hypercube), and subsequently by associating the sampling points
with weights obtained as volumes of regions/cells around the sampling points within a unit hy-
percube. These cells are constructed by the Voronoi tessellation around each point. Supposedly,
this approach could have been considered superior over the naive one because it can suppress
inaccuracies stemming from clusters of sampling points.

Keywords: Monte Carlo sampling, estimation of statistical moments, Voronoi tesselation, weighted
average, probability weights

1. Introduction

Monte Carlo estimation of statistical integrals is encountered in numerous applications. A typical
example is the computer exploration of functions that feature random variables. These random
variables form anNvar-dimensional vector, whereNvar is the number of random variables considered.
In computer experiments the first step is a selection of optimal sample set, i.e. selection of Nsim

points from the Nvar dimensional space. These points then form the sampling plan which is a Nsim×
Nvar matrix. The methods used for formulating the plan of experimental points are collectively
known as Design of Experiments (DoE). The purpose of DoE is to provide a set of points lying
inside a chosen design domain that are optimally distributed; the optimality of the sample depends
on the nature of the problem. Various authors have suggested intuitive goals for good designs,
including “good coverage”, the ability to fit complex models, many levels for each factor/variable,
and good projection properties. At the same time, a number of different mathematical criteria have
been put forth for comparing designs.

c© 2016 by authors. Printed in Germany.
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The design of experiments is typically performed in a hyper-cubical domain of Nvar dimensions,
where each dimension/variable, Uv, ranges between zero and one (v = 1, . . . , Nvar). This design
domain is to be covered by Nsim points as evenly as possible as the points within the design
domain represent sampling probabilities. The probability that the i-th experimental point will be
located inside some chosen subset of the domain must be equal to VS/VD, with VS being the subset
volume and VD the volume of the whole domain (for unconstrained design VD = 1). Whenever this
is valid, the design criterion will be called uniform. Even though such uniformity is conceptually
simple and intuitive on a qualitative level, it is somewhat complicated to describe and characterize it
mathematically. Though some problems do not require this uniformity, it is the crucial assumption
in Monte-Carlo integration and its violation may lead to significant errors (Eliáš and Vořechovský,
2016; Vořechovský and Eliáš, 2015).

There exist many other criteria of optimality of the sampling plan: e.g. the Audze-Eglājs (AE)
criterion (Audze and Eglājs, 1977) later generalized into the so-called φ criterion, the Euclidean
MaxiMin and MiniMax distance between points, various measures of discrepancy, criteria based on
correlation (orthogonality), designs maximizing entropy and many others. It should also be noted
that an experimental design can be also obtained via so-called “quasi-random” low-discrepancy
sequences (deterministic versions of MC analysis) that can often achieve reasonably uniform sample
placement in hypercubes (Niederreiter, Halton, Sobol’, Hammersley, etc.).

As mentioned above, the selection of the sampling points is a crucial step when evaluating
approximations to integrals as is performed in Monte Carlo simulations (numerical integration),
where equal sampling probabilities inside the design domain are required.

In this article, it is assumed that the sampling points have already been selected and they are
not spread uniformly over the design domain. A typical example may be a sample selected using
crude Monte Carlo sampling. The article considers the possibility to improve quality of Monte
Carlo estimation with such a given sample. The only possibility to improve the estimations of
the integrals is to vary the weights associated with individual sampling points. Motivated by the
MiniMax criterion of optimality and also by various numerical integrating schemes, we explore
the possibility to improve the quality of statistical estimations using Voronoi tessellation, i.e. a
particular form of partitioning of the design domain around given sampling points. The design
domain to be partitioned is the unit hypercube described above and therefore the volumes around
individual sampling points represent weights (probabilities) to be used in the weighted averages
that estimate the integrals.

2. Statistical Moment Estimation Using Monte Carlo Sampling

As mentioned in the introduction, one of the frequent uses of DoE is statistical sampling for Monte
Carlo integration. We present the application of statistical sampling to the problem of estimating
statistical moments of a function of random variables. In particular, a deterministic function,
Z = g (X), is considered, which can be a computational model or a physical experiment. Z is
the uncertain response variable (or generally a vector of the outputs). The vector X ∈ RNvar is
considered to be a random vector of Nvar continuous marginals (input random variables describing
uncertainties/randomness) with a given joint probability density function (PDF).
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Estimation of the statistical moments of variable Z = g (X) is, in fact, an estimation of integrals
over domains of random variables weighted by a given joint PDF of the input random vector, fX (x).
We seek the statistical parameters of Z = g (X) in the form of the following integral:

E[S [g (X)]] =

∞∫
−∞

. . .

∞∫
−∞

S [g (x)] dFX (x) (1)

where dFX (x) = fX (x) · dx1 dx2 · · · dxNvar is the infinitesimal probability (FX denotes the joint
cumulative density function) and where the particular form of the function S [g (·)] depends on
the statistical parameter of interest. For example, to gain the mean value of g (·), S[g (·)] = g (·);
higher statistical moments of Z can be obtained by integrating polynomials of g (·). The probability
of failure (an event defined as g(·) < 0) is obtained in a similar manner: S [·] is replaced by the
Heaviside function (or indicator function) H [−g (X)], which equals one for a failure event (g < 0)
and zero otherwise. In this way, the domain of integration of the PDF is limited to the failure
domain.

In Monte Carlo sampling, which is the most prevalent statistical sampling technique, the above
integrals are numerically estimated using the following procedure: (i) draw Nsim realizations of
X that share the same probability of occurrence 1/Nsim by using its joint distribution fX (x); (ii)
compute the same number of output realizations of S[g (·)]; and (iii) estimate the desired parameters
as arithmetical averages. We now limit ourselves to independent random variables in vector X. The
aspect of the correct representation of the target joint PDF of the inputs mentioned in item (i) is
absolutely crucial. Practically, this can be achieved by reproducing a uniform distribution in the
design space (unit hypercube) that represents the space of sampling probabilities.

Assume now a random vector U that is selected from a multivariate uniform distribution in such
a way that its independent marginal variables Uv, v = 1, . . . , Nvar, are uniform over intervals (0; 1).
A vector with such a multivariate distribution is said to have an “independence copula” (Nelsen,
2006)

C(u1, . . . , uNvar) = P(U1 ≤ u1, . . . , UNvar ≤ uNvar) =

Nvar∏
v=1

uv (2)

These uniform variables can be seen as sampling probabilities: FXv = Uv. The joint cumulative dis-
tribution function then reads FX (x) =

∏
v FXv =

∏
v Uv, and dFX (x) =

∏
v dUv. The individual

random variables can be obtained by inverse transformations

{X1, . . . , XNvar} = {F−1
1 (U1), . . . , F−1

Nvar
(UNvar)} (3)

and similarly the realizations of the original random variables are obtained by the component-wise
inverse distribution function of a point u (a realization of U) representing a sampling probability

x = {x1, . . . , xNvar} = {F−1
1 (u1), . . . , F−1

Nvar
(uNvar)} (4)
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With the help of this transformation from the original to the uniform joint PDF, the above
integral in Eq. (1) can be rewritten as

E[S [g (X)]] =

1∫
0

. . .

1∫
0

S [g (x)] dC(u1, . . . , uNvar)

=

∫
[0,1]Nvar

S [g (x)]

Nvar∏
v=1

dUv (5)

so that the integration is performed over a unit hypercube with uniform unit density.
We now assume an estimate of this integral by the following statistic (the average computed

using Nsim realizations of U , namely the sampling points uj (j = 1, . . . , Nsim))

E[S [g (X)]] ≈ 1

Nsim

Nsim∑
i=1

S [g(xi)] (6)

where the sampling points xi = {xi,1, . . . , xi,v, . . . , xi,Nvar} are selected using the transformation
in Eq. (4), i.e. xi,v = F−1

v (ui,v), in which we assume that each of the Nsim sampling points ui

(i = 1, . . . , Nsim) were selected with the same probability of 1/Nsim. Violation of the uniformity
of the distribution of points ui in the unit hypercube may lead to erroneous estimations of the
integrals.

If the sampling points are not selected carefully with respect to equal probabilities in the design
domain, the possibility to improve the accuracy in Eq. (6) is to use weights different from 1/Nsim.
These weights reflect the probability content of the cells around individual sampling points

E[S [g (X)]] ≈
Nsim∑
i=1

S [g(xi)] · wi (7)

The proposed approach aims at finding appropriate weights that are calculated considering
the spatial distribution of the points. Obviously, unvisited regions of the design domain can not
be explored by a nonuniform design. Partitioning the space into cells around the given sampling
points may help to reduce probabilities associated with points that are participating in clusters of
points. Voronoi tessellation has been selected for partitioning of the design space into volumes that
are used as the weights wi, i = 1, . . . , Nsim. The following section describes the Voronoi tessellation
procedures.

3. Weights Obtained as Volumes of Voronoi Regions

The weights associated with the design points are considered as volumes of Voronoi regions (Au-
renhammer, 1991) computed on the sampling points. The Voronoi tessellation in Nvar-dimensional
space results in Nsim convex polyhedrons Vi that encloses all the points that are closer to i-th
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Figure 1. Example of clipped and periodic tessellation for Nvar = 2 and Nsim = 16 with help of reflected and
periodically repeated auxiliary points, respectively.

sampling point than any other. Defining the distance of point u from sampling point ui as di(u),
the Voronoi region associated with i-th sampling point can be formally defined as

Vi =
{
u ∈ RNvar | ∀ j 6= i : di(u) ≤ dj(u)

}
(8)

Two alternatives of Voronoi tessellation that differ in the boundary regions are investigated:

− clipped Voronoi tessellation that is limited to the unit hypercube only

Vi =
{
u ∈ 〈0, 1〉Nvar | ∀ j 6= i : di(u) ≤ dj(u)

}
(9)

− periodic Voronoi tessellation which assumes that every sampling point is periodically repeated
in the space along all the dimensions.

These two different concepts are demonstrated in Figure 1. The reason for studying the periodic
tessellation is that the authors have shown recently (Eliáš and Vořechovský, 2016; Vořechovský and
Eliáš, 2015) that the presence of boundaries in the hypercubical design domain cause problems.
Briefly, one may think of a problem of packing (hyper)balls into a (hyper)cube. It is clear that
the boundary is responsible for a kind of wall-effect. It has been shown (Eliáš and Vořechovský,
2016; Vořechovský and Eliáš, 2015) that this problem can be removed by considering periodic
extension of the design domain. The balls then permeate through the boundaries without interacting
with them, see Figure 1 right.

The clipped Voronoi diagrams (Chan et al., 1995; Yan et al., 2013) are used mostly for con-
struction of meshes and therefore available software to compute such tessellation is limited to two
and three dimensional space. A similar situation exists for periodic Voronoi tessellation (Yan et al.,
2011; Rycroft, 2009). In the field of design of experiments more than three variables (factors) can be
present and therefore the tessellation must be performed in higher dimensions. In this contribution,
Qhull software (Barber et al., 1996) is utilized for both clipped and periodic tessellations because
it can compute Voronoi tessellation for arbitrary dimension. On the other hand, it cannot work
directly with neither clipped nor periodic boundary condition and therefore simple tricks are used.
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445
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These tricks consist in manipulations of the design domain (together with the sampling points
contained) by adding new design domains around it. In order to obtain the clipped structure, the
design domain is extended by reflecting the original design domain along each dimension. There
are two reflections of the original unit interval along each dimension to obtain intervals 〈−1, 0〉
and 〈1, 2〉. Therefore, the tessellation is performed on Nsim

(
1 + 2Nvar

)
points. The use of reflection

automatically provides edges between cells that coincide with the boundary of the original design
domain and therefore the volumes outside the design domain can be ignored. The use of reflection
to obtain clipped tessellation was proposed in (Pronzato and Müller, 2012).

The periodic structure is obtained by periodic extension (replication) of the original design
domain along each direction and additionally the replication must be performed to obtain all the
“corner” domains to fill a hypercube 〈−1, 0〉Nvar . Therefore, Nsim · 3Nvar points in total are used for
the periodic tessellation.

The computational times needed for the both tessellation types can be substantially reduced if
it involves only reflected or periodically repeated points that are close to the original hypercube,
because only these points affects the tessellation inside the hypercube. Unfortunately, no effective
algorithm has been developed yet to identify such points and therefore the full set of points must
be involved for certainty.

In both alternatives, the weights for individual sampling points are the volumes of regions
surrounding points. There are three algorithms available for the volume computation: (i) direct
integration, (ii) Monte-Carlo integration and (iii) division into simplexes for which analytical
formula is available. The first two algorithms are nicely elucidated in (Ong et al., 2003). Here,
we perform the third algorithm. Each Voronoi region is (with a help of the Qhull) divided into
simplexes. Each simplex has Nvar + 1 vertices denoted vi. The total volume of the region is simply
the sum of simplex volumes, that are calculated based on the determinant of coordinate matrix.

Vsimplex =

∣∣∣∣∣∣∣∣∣
1

Nvar!


v1 − v0

v2 − v0
...

vNvar − v0


∣∣∣∣∣∣∣∣∣ (10)

These volumes are used directly as weights of sampling points enclosed withing these cells.

4. Frequency Analysis of Weights

It turns out to be important to see (i) whether the weights are very scattered compared to 1/Nsim

and, (ii) whether their magnitude tend to depend on the position inside the domain. This is
achieved by studying Nrun = 1000 realizations of samples, each having Nsim points within an
Nvar-dimensional hypercube. For each sample, both types of Voronoi tessellation is constructed
and the weights are statistically processed.

The results will be presented for two sampling schemes: the classical (crude) Monte Carlo
sampling without any optimization (MC-RAND) and LHS (Latin Hypercube Sampling) optimized
using the periodic criterion (LHS-PAE). PAE stands for an enhanced version of the Audze-Eglais
criterion, see (Eliáš and Vořechovský, 2016; Vořechovský and Eliáš, 2015).
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Figure 2. Voronoi weights for MC-RAND and LHS-PAE sampling plans (Nvar = 2, Nsim = 16). Comparison of the
clipped and periodic tessellations.

Figure 2 shows one sample (Nsim=16) of a bivariate random vector Uv for both sampling
schemes. For the two sampling schemes, both types of Voronoi diagrams (clipped and periodic)
are constructed and visualized with colors depending on the area. The LHS-PAE sampling plans
show more uniform distribution of points because the PAE-optimized LH-sampling better avoids
clustering and limit the occurrence of empty regions. Therefore, the cells in LHS-PAE have similar
volumes and the sampling points are closer to the centers of Voronoi regions. The small differences
among weights in LHS-PAE with periodic tessellation suggest that weighting will not make much
difference in comparison with integrals evaluated using equal weights 1/Nsim. The MC-RAND
sampling plans suffer from point clustering and therefore, high variability in volumes of the Voronoi
cells is observed. It should be noticed that the choice of tessellation (clipped vs. periodic) affects
only the boundary regions while the central part of the hypercube is identical.

In order to judge about the spatial distribution of weights within the design domain, the above-
mentioned Nrun=1000 realizations of samples accompanied by Voronoi tessellations were prepared
and for each spatial location, the mean value and standard deviation of weights occurring at that
location have been calculated. The weights (volumes of Voronoi regions Vsimplex in a hypercube)
depend on the type of tessellation but they are independent of the sampling method (MC vs.
LHS). The bivariate histograms in Figure 3 document the dependency of the mean value and the
standard deviation of Voronoi region volumes on the position of the sampling point in a square. In
the case of clipped tessellation, both the mean value and the standard deviation of weights are not
uniform in the hypercube. Three zones can be distinguished: (a) the boundary region where the
mean value (shown in blue) of weights is underestimated. The boundary strip is followed/balanced
by (b) zone parallel to the boundary where the weights are overestimated (see the yellow to red
color) and finally, (c) the bulk zone sufficiently far from the boundary, where the weights (volumes)
are constant on average. The width of the two boundary zones is decreasing with increasing sample
size Nsim.

Such a biased representation of different regions in the hypercube partitioned by the clipped
tessellation must have consequences in Monte Carlo integration. If the points are sampled uniformly,
and that is indeed the case of both MC-RAND and LHS-PAE, some error must be introduced due to
introduction of nonuniform weighting. If the functions are sensitive to inaccuracies in representation
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447
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Figure 3. Bivariate histograms of the mean value and the standard deviation of cell volumes for both sampling plans
and both tessellation alternatives (Nvar = 2, Nsim = 16 and Nrun = 1000 realizations).

of the boundary regions, their weighted MC integration may yield biased results. Therefore we
conclude that the clipped tessellation generally should not be used for weighting in MC integration.

The periodic tessellation provides more promising bivariate histograms: no bias around the
boundaries is visible for both MC-RAND and LHS-PAE sampling schemes. The statistics of the
weights do not depend systematically on the position in the hypercube.

5. Numerical Examples of MC Integration & Discussion

This section studies whether weighting in MC integrals based on the Voronoi tessellation improves
the quality of the estimates. Three basic transformations g of standard independent Gaussian
random variables Xv, v = 1, . . . , Nvar have been selected for the numerical study. The following
array presents formulas of the three functions (first column), the analytical solutions for the mean
values (second column) and standard deviations (third column):

Zsum = gsum(X) =

Nvar∑
v=1

X2
v µsum = Nvar σsum =

√
2Nvar (11)

Zexp = gexp(X) =

Nvar∑
v=1

exp(−X2
v ) µexp =

√
3

3
Nvar σexp =

√
Nvar

√√
5

5
− 1

3
(12)

Zprod = gprod(X) =

Nvar∏
v=1

Xv µprod = 0 σprod = 1 (13)
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The two sampling schemes studied above (MC-RAND and LHS-PAE) have been used to prepare
Nrun = 1000 sampling plans for various sample sizes Nsim and dimensions Nvar. Each sample set is
accompanied by both types of tessellations – periodic and clipped.

The performance of the approaches to estimate the integrals will be demonstrated by showing
their ability to estimate the mean value and standard deviation of the transformed variable Z =
g (X). The estimated mean value and standard deviation are denoted as µ̄Z and σ̄Z , respectively:

µ̄Z =

Nsim∑
i=1

g(xi) · wi (14)

(σ̄Z)2 =
Nsim

Nsim − 1

Nsim∑
i=1

(g(xi)− µ̄Z)2 · wi (15)

The term Nsim/ (Nsim − 1) is a standard adjustment that makes the sample variance unbiased.
Analogical adjustment terms are known for higher statistical moments of random variables, see
e.g. (Cramér, 1945). When the individual sampling points have unequal weights, similar correction
terms have recently been derived (Rimoldini, 2014). The corrections use terms calculated as sums

of pth powers of weights: Vp =
∑Nsim

i=1 wp
i . For example, in the case of estimation of variance (σ̄Z)2,

the term Nsim/ (Nsim − 1) is replaced by V 2
1 /
(
V 2

1 − V2

)
. The corresponding unweighted form can

be achieved by direct substitution of wi = 1/Nsim. This results in Vp = 1/Nsim
p−1 (or simply

Vp = Nsim) for all p, leading to the known formulas for sample-size unbiased moments (Cramér,
1945). We note that in the case of functions studied in the present paper, the enhancement using
Vp makes almost no change compared to the results obtained with considering all Vp = Nsim.

Three approaches to the weighting in Monte-Carlo type numerical integration are compared:

− uniform weights that assign each design point a constant weight wi = 1/Nsim,

− clipped Voronoi weights that assign weights according to the “volumes” of Voronoi regions
obtained using the clipped tessellation,

− periodic Voronoi weights that use periodic Voronoi tessellation.

Based on the study focused on spatial distribution of weights within the design domain, one
might expect that the periodic tessellation may or may not deliver improvement while the clipped
tessellation must lead to biased MC integration when used to perform weighting. The results of
numerical study are presented in Figure 4 for all three functions, two estimated statistical moments,
two sampling schemes and three alternatives of weighting. Each alternative presents a line of the
average with a scatter-band (shaded area) obtained as the mean value ± one standard deviation
– both computed using Nrun = 1000 realizations. A three dimensional domain has been selected:
Nvar = 3.

The standard procedure employing uniform weights leads to convergence to the exact value as
expected. The estimator variance decreases with increasing Nsim.

The clipped Voronoi weights provide poor estimates as expected. Although the variance is
generally lower than in case of uniform weights, the average converges significantly slower. The
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1.5
2.0
2.5
3.0
3.5
4.0

1.0
1.5
2.0
2.5
3.0
3.5 Zsum

1.6

1.8

2.0

2.2

0.3
0.4
0.5
0.6
0.7
0.8

0.4

0.2

0.0

0.2

0.4

10 1 10 2 10 3

Nsim
10 1 10 2 10 3

Nsim

0.2
0.4
0.6
0.8
1.0
1.2
1.4

1/Nsim

exact solution
periodic Voronoi
clipped Voronoi

MC-RAND LHS-PAE

Zexp

Zprod

Figure 4. Convergence of the estimated mean values and standard deviations of the three transformed variables gsum,
gexp and gprod, computed for Nvar = 3. Left column: MC-RAND, Right column: LHS-PAE.
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reason is the improper volumes of boundary cells, the boundary zones are underestimated followed
by the overestimated zone (see e.g. the bivariate histograms in Figure 3). It eventually also converges
to the correct solution as the biased boundary region gets narrower with increasing Nsim.

Application of the periodic Voronoi diagram to obtain weights for calculation of statistics of
the transformed random variable Z provides, on average, similar convergence to the exact value as
observed with uniform weights. Also the variance of the estimator is similar. In fact, the variance
of estimators seems to be slightly improved for MC-RAND sampling scheme, however, consider-
ing the relatively high computational cost related to evaluation of periodic Voronoi weights, the
improvement is not worth the effort.

6. Conclusions

This paper studied two alternatives of Voronoi tessellation in an attempt to improve Monte-Carlo
integration for small Nsim by weighting individual sampling points. The weights were obtained as
volumes of the Voronoi cells – the regions surrounding the sampling points in the design domain
(unit hypercube).

Weighting using the clipped Voronoi tessellation (a tessellation limited to the design domain)
was found inapplicable due to problems related to the presence of boundaries of the unit hypercube.
The tessellation results in systematic appearance of underestimated regions near the boundaries
followed by regions with over-weighted regions.

The periodic tessellation slightly improves the integration if the location of sampling points is
not optimized such as in the case for crude Monte Carlo sampling. However, the minor improvement
does not outweigh the additional effort spend on the evaluation of the volumes of the regions and
the tessellation.
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Audze, P. and V. Eglājs. New approach for planning out of experiments. In Problems of Dynamics and Strengths,
35:104–107, Russian, 1977.

Aurenhammer, F. Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. ACM Computing
Surveys, 23(3):343–405, 1991.

Barber, C.B., D.P. Dobkin and H.T. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software, 22(4):469–483, 1996. http://www.qhull.org

Chan, T.M.Y., J. Snoeyink and Ch.K. Yap. Output-sensitive construction of polytopes in four dimensions and clipped
Voronoi diagrams in three. In: Proceedings of the sixth annual ACM–SIAM symposium on discrete algorithms,
282–291, 2013.

Cramér, H. Mathematical Methods of Statistics. Princeton landmarks in mathematics and physics, 1945.
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Eliáš, J. and M. Vořechovský. Modification of the Audze–Eglajs criterion to achieve a uniform distribution of sampling
points.Advances in Engineering Software, under review.

Nelsen, R.B. An Introduction to Copulas, volume XIV of Springer Series in Statistics. Springer, 2nd edition, 2006.
Ong, H.L., H.C. Huang and W.M. Huin. Finding the exact volume of a polyhedron. Advances in Engineering Software,

34(6):351–356, 2003. doi:10.1016/S0965-9978(03)00030-9.
Pronzato, L. and W.G. Müller. Design of computer experiments: space filling and beyond. Statistics and Computing,

22(3):681–701, 2012. doi:10.1007/s11222-011-9242-3.
Rimoldini, L. Weighted skewness and kurtosis unbiased by sample size and Gaussian uncertainties. Astronomy and

Computing, 5:1–8, 2014. doi:10.1016/j.ascom.2014.02.001.
Rycroft, Ch.H. Voro++: a three-dimensional Voronoi cell library in C++. Documentation of the Voro++ software,

2009.
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Abstract: A static analysis of structural systems with uncertain parameters is presented. Uncer-
tain load and material parameters of the system are modeled by probability-boxes (or p-boxes),
which do not require complete information about the statistical nature of the underlying random
process. Arithmetic operations on p-boxes yield guaranteed lower and upper bounds on the proba-
bility distribution of the solution, regardless of the dependency among those uncertain parameters.
In this paper, both load and material uncertainties for the first time are handled using a non-
Monte-Carlo p-box approach that guarantees to enclose the exact solution. The governing linear
equations are solved by an iterative approach that exploits a fixed-point formulation of the system
of linear equations. In order to reduce overestimation and obtain the tightest bounds possible, a
decomposition of the stiffness matrix of the structure is adopted. The resulting formulation gives
guaranteed lower and upper bounds of the probability distribution of the structural responses, at
a high computational efficiency and a low overestimation level.

Keywords: uncertainty, probability-box, matrix decomposition, iterative enclosure method

1. Introduction

Real systems contains uncertainties that cause discrepancy between the performance of the the-
oretical model and the real system (Fernández-Mart́ınez et al., 2013). Conventional treatment of
uncertainties involves probability theory, which models uncertain parameter in the system using ran-
dom variables (Kolmogorov, 1950). This probabilistic approach successfully handles problems when
the statistical nature of the uncertainty is well understood. Thus it is suitable when only allegoric
uncertainties are present. However, when the nature of the uncertainty is not well understood and
epistemic uncertainties are present (Moens and Hanss, 2011; Zhang, 2005), alternative approaches
are proposed, such as Bayesian network (Igusa et al., 2002; Soize, 2013), fuzzy sets (Dehghan et
al., 2006; Klir and Wierman, 1999), evidence theory (Dempster, 1967; Shafer, 1968), and intervals
(Alefeld and Herzberger, 1984; Kulisch and Miranker, 1981; Moore et al., 2009; Muhanna et al.,
2007).

The probability-box approach (or more compactly, p-box) integrates the conventional probability
theory with the concept of intervals (Augustin and Hable, 2010; Beer, et al., 2013; Ferson, 2002).
A p-box gives the lower and upper bounds on the cumulative distribution function (CDF) for an

c© 2016 by authors. Printed in Germany.
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uncertain variable. It is subject to any legitimate CDF within the given lower and upper bounds.
Hence a traditional random variable can be interpreted as a p-box with zero width, and an interval
can be interpreted as a rectangular p-box with constant width (Ferson, 2002).

One of the advantage of the p-box approach is the incorporation of bounded dependence in-
formation. In application of conventional probability theory, dependence of two random variables
are simplified to their covariance or correlation coefficient (Cui and Blockley, 1990; Davis and
Hall, 2003; Lucas, 1995). For linear dependence, the correlation coefficient is either 1 (perfect
dependence) or −1 (opposite dependence). For independent variables, the correlation coefficient is 0.
Then information about the covariance or correlation is used to analyse the random variables under
consideration. Complete information about dependence is given by a joint probability distribution.
However, it is often measured by limited information as covariance correlation coefficient (Ferson,
et al., 2004). For instance, it is easy to construct two random variables that has 0 correlation
coefficient but nonlinear dependence. Thus a more vigorous approach is required when available
data is scarce and the consequence is high.

The p-box approach is designed to consider unknown dependence between random variables
(Ferson, et al., 2004; Williamson, 1989). The p-box approach uses copulas (Kimeldorf and Sampson,
1975; Nelsen, 1999; Sklar, 1959), which gives complete information about the dependence of two
random variables. Specifically, lower and upper bounds of the copula is used when performing binary
arithmetic operations on p-boxes, such as addition, subtraction, multiplication, and division. In
addition, due to the duality theorem (Frank and Schweizer, 1979; Williamson, 1989), the convolution
of p-box, which is originally performed on the bounds of the CDF for given value on the random
variable, can be performed on the bounds of the random variable for a given probability level. This
significantly improves computational efficiency and facilitates discretization. Detailed discussion on
p-boxes and their arithmetic operations can be found in Ferson (2002) and Williamson (1989).

In this paper, the p-box approach is applied to solve structural static problems with uncertain
parameters. Both uncertainties in load and in material are considered. To reduce overestimation,
a decomposition strategy (Muhanna and Mullen, 2001; Xiao, 2015) is presented, and a fixed-point
formulation (Xiao, 2015; Xiao, et al., 2015) is implemented to solve the resulting governing linear
system. To illustrate the performance of the current method, two numerical examples are solved,
and the solutions are compared with those obtained from other available methods such as the
interval Monte Carlo method (Zhang, et al., 2012). The results show that the current algorithm
yields a tight p-box that encloses the solution, regardless of the dependence of the random variables.

2. Preliminaries on P-Boxes

A probability-box (or p-box) is useful to describe random variables whose probability distributions
are not fully known. The p-box approach provides a rigorous way to account for uncertainty in
our (lack of) knowledge of the random variables under study (Ferson, et al., 2004) by accounting
for unknown dependence of the random variables. Arithmetic operations on p-boxes are developed
in a way consistent with conventional probability theory (Ferson, 2002; Williamson, 1989). In the
following subsections, some background information about p-boxes are introduced.
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2.1. Description of a p-box

A p-box is defined by its lower and upper bounds on the cumulative distribution function (CDF)
FX(x) and FX(x). It represents all legitimate random distributions whose CDF lie within that
range. For a given value of x, the lower bound FX(x) means the lowest probability that the random

variable X is smaller than x, and the upper bound FX(x) means the highest probability that X is
smaller than x (Williamson, 1989).

The inverse functions of FX(x) and FX(x) gives the respective upper and lower bounds of a
range [x, x] of the random variable X for a given probability level FX . For a given value of FX ,

FX
−1

(FX) is the smallest x such that the probability of X is smaller than x is FX , and FX
−1(FX)

is the largest, where superscript −1 means inverse function. Note that the lower bound function
FX(x) corresponds to the upper bound x for a given FX , and vice versa.

For a discrete description of a p-box, a list of triples [mi, xi, xi] are used (Dubois and Prade,
1991; Zhang, et al., 2012), where mi are the probability masses, and [xi, xi] are the associated
intervals. The i -th probability mass mi can be viewed as the probability that the i -th focal element
[xi, xi] is the range of x. For convenience, the probability masses have the same value for all focal
elements, i.e., mi = 1/m, where m is the number of focal elements in the discretization.

2.2. Dependency and copulas

The complete dependence information between two random variables are described by their joint
probability distribution, which can be specified by a joint probability density function or a joint
cumulative distribution function (Ferson, et al., 2004; Nelsen, 1999; Sklar, 1959). Because we are
primarily dealing with CDF in p-boxes, the latter approach is adopted here.

For given random variables X and Y, any joint cumulative distribution function FXY (X, Y ) can
be expressed in terms of marginal distribution functions FX(x) and FY (y) via the introduction of
a 2D mapping C(a, b) : [0, 1]× [0, 1] 7→ [0, 1]

FXY (X, Y ) = C (FX(x), FY (y)) . (1)

In the above equation, the 2D mapping C(u, v) is a copula, satisfying the following requirements:

− C(a, 0) = C(0, a) = 0 and C(a, 1) = C(1, a) = a for all a ∈ [0, 1];

− C(a1, b1) + C(a2, b2) − C(a1, b2) − C(a2, b1) ≥ 0 for all a1, a2, b1, b2 ≥ 0 such that a1 ≤ a2
and b1 ≤ b2.

Any arbitrary copula C(u, v) satisfies

W (u, v) ≤ C(u, v) ≤M(u, v), (2)

where W (u, v) = max(u + v − 1, 0) and M(u, v) = min(u, v) are the lower and upper Fréchet-
Hoeffding bounds for any copula, respectively (Fréchet, 1951; Hoeffding, 1940). The lower bound
W (u, v) represents an opposite dependence between two distributions, and the upper boundM(u, v)
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represents a perfect dependence. As a side note, independent case is represented by the copula
Π(u, v) = uv. The dual of a copula is defined as

C∗(u, v) = u+ v − C(u, v). (3)

Parametrized copulas can be used to model dependence of different strength. One class of
copulas, the Archimedean class, is associative and admits an explicit formula (Nelsen, 1999). The
Archimedean copula has the following form

Cθ(u, v) = ψ−1θ (ψθ(u) + ψθ(v)) , (4)

where ψθ : [0, 1] 7→ [0, ∞) is the generator function, which is continuous, strictly decreasing, convex,
and ψθ(1) = 0. Some of the most important families of Archimedean copulas include:

− The Clayton family (Clayton, 1978), with generator function ψθ(x) = (x−θ − 1)/θ,

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, (5)

where θ ≥ −1. The perfect dependence corresponds to θ = ∞, the opposite dependence is
θ = −1, and the independent case is θ = 0.

− The Frank family (Frank, 1979), with generator function ψθ(x) = ln
( e−θ − 1

e−xθ − 1

)
,

Cθ(u, v) =
1

θ
ln

(
1 +

(e−uθ − 1)(e−vθ − 1)

e−θ − 1

)
, (6)

where θ ∈ R. The perfect dependence corresponds to θ = −∞, the opposite dependence is
θ =∞, and the independent case is θ = 0.

The above discussion is restricted to bivariate case for two random variables X and Y, but the
idea can be easily extended to multi-variate case as well.

2.3. Arithmetic operations on p-boxes

For a single p-box X, its negation, its reciprocal, and its multiplication with a real number are all
p-boxes. For instance, consider its negation Y = −X. Assume the lower and upper bound functions
are FX(x) and FX(x), respectively. Then

FY (y) = 1− FX(−y), FY (y) = 1− FX(−y). (7)

If the discrete description is used, and the focal elements are [xi, xi], the results are

[y
i
, yi] = [−xm+1−i, −xm+1−i], (8)

where m is the number of focal elements.
For two p-boxes X and Y, the result of their arithmetic binary operations, such as addition,

subtraction, multiplication, and division, is also a p-box. The result depends on the lower and upper
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bounds of their respective CDF’s, as well as the copula between X and Y. According to Williamson
(1989), for two p-boxes X and Y, the lower and upper bounds of the CDF of the sum Z = X + Y
are given by

FZ(z) = sup
v ∈R

C
(
FX(z − v), FY (v)

)
, FZ(z) = inf

v ∈R
C∗
(
FX(z − v), FY (v)

)
, (9)

where C(u, v) is the known lower bound of the copula between X and Y, and C∗(u, v) is its dual.
For discrete description, the i -th focal element of the sum, i.e., [zi, zi], is given by

zi = sup
j, k∈C∗

i

(xj + y
k
), zi = inf

j, k∈Ci

(xj + yk), (10)

where j, k ∈ Ci means that j and k satisfy i−1
m ∈ C([ j−1m , j

m ], [k−1m , k
m ]), and j, k ∈ C∗i means

that j and k satisfy i
m ∈ C∗([ j−1m , j

m ], [k−1m , k
m ]). For the Fréchet-Hoeffding lower bound copula

W (u, v) = max(u+ v − 1, 0), Eq. (10) becomes

zi = sup
j∈[1, i]

(xj + y
i+1−j), zi = inf

j∈[i,m]
(xj + yi+m−j) (11)

For multiple p-boxes Xi, when the dependence coefficient θ is constant, both the addition and the
multiplication are associative. The results do not depend on the order of the arithmetic operations
performed. Operations on vector and matrix with p-box entries can be defined accordingly. However,
for each binary arithmetic operation (+, −, ×, or ÷), the corresponding dependence coefficient θ
or the copula Cθ(u, v) in general must be specified. In practice, this is not always possible. Hence
the usual practice is to specify θ corresponding to the lower and upper bounds of the copulas. For
positive dependence, the lower bound θ = 0 and the upper bound θ = ∞ for both the Clayton
family and the Frank family. For negative dependence, θ = −∞ and θ = 0 for the Clayton family,
and θ = −1 and θ = 0 the Frank family. In both cases, the independent case is included as a
subset. Hence the yielded solution considers the least favorable circumstances possible and encloses
the solutions assuming independence, as observed in the comparison with the interval Monte Carlo
solution (Zhang, et al., 2012) in the numerical example section.

For a more comprehensive discussion on arithmetic operations of p-boxes, we refer to the work
of Ferson (2002) and Williamson (1989). In particular, Ferson (2002) considers binary arithmetic
operations under the independence assumption.

3. Finite Element Formulation

Many engineering problems can be reduced to solving the following linear system of equations. For
instance, for structural static analysis, after a displacement-based Finite Element (FE) discretiza-
tion (Bathe and Wilson, 1976; Cook, et al., 2007), the system governing equation is

Ku = f , (12)

where K is the stiffness matrix, f is the equivalent load vector, and u is the unknown displacement
vector. The goal is to solve for the unknown displacement vector u when the external load and the
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structure itself are given. When the system contains uncertain parameters, and those parameters
are modeled by p-boxes, matrix K and vector f contain p-box entries. As a result, the unknown
vector u also contains p-box entries. The goal of the current section is to develop an algorithm to
solve the linear system Eq. (12) when p-box entries are present.

Following our previous work on interval linear systems (Xiao, 2015), to reduce overestimation
in the interval of the final solution, the stiffness matrix K and the equivalent load vector f are
decomposed into a form that minimize the multiple occurrences of the same p-box (Muhanna
and Mullen, 2001). In addition, parametrized copulas are introduced to model dependence among
uncertain parameters. Finally, the linear system Eq. (12) is solved using an iterative approach
(Neumaier and Pownuk, 2007) by transforming the governing equation into a fixed-point form.
Detailed discussions are presented in the following subsections.

3.1. Matrix decomposition strategy

The following decomposition of the stiffness matrix K and the equivalent load vector f is presented

KP = A diag
(
ΛαP

)
AT , fP = FδP , (13)

where the superscripts P emphasize that these variables contain p-box entries. After decomposition,
all the p-box entries are included in vectors αP and δP . The above decomposition eventually reduce
the overestimation of the final solution and helps to obtain a tighter bounds, as illustrated in the
numerical simulation section.

In practice, the decompositions in Eq. (13) are performed at the element level before assem-
bly. First the element stiffness matrix KP

e and the element nodal equivalent load vector fPe are
computed. Their decompositions yield the element matrices Ae, Λe, Fe, α

P
e , and δPe . These are

further assembled into their global counterparts A, Λ, F, αP, and δP . During the assembly, the
element-by-element (EBE) (Rama Rao, et al., 2011) assembly is adopted.

For the standard two-node plane truss elements, assume the Young’s modulus EP are modeled
as p-boxes. The corresponding element stiffness matrix KP

e is given by

KP
e =


EPA/L 0 −EPA/L 0

0 0 0 0
−EPA/L 0 EPA/L 0

0 0 0 0

 . (14)

where L is the element length. Then αP
e contains the only p-box EP in the element, and the

corresponding Ae and Λe are given by

Ae =
{
−1 0 1 0

}T
, Λe =

{
A/L

}
, αP

e =
{
EP
}
. (15)

The element nodal equivalent load vector fPe is decomposed into the form fPe = Feδ
P
e using the

M -δ method (Muhanna and Mullen, 2001). Thus the p-box terms in the element load uncertainty
vector δPe is completely separated from the deterministic part Fe of the equivalent load.

In the element-by-element assembly, the structure is modeled by separated elements and common
nodes that connect the elements. As a result, the structural nodal displacement vector uP is a
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collection of all the element nodal displacement vectors uPe , and the nodal displacement vector
uPn of the common nodes. Then the global stiffness matrix KP and nodal equivalent load fP are
assembled from their element counterparts

uP =


uPe
...

uPe
uPn

 , KP =


KP
e

. . .

KP
e

0

 , fP =


fPe
...

fPe
fPn

 , (16)

where fPn denotes concentrated forces applied directly on the common nodes. The assembly of A,
Λ, F, αP, and δP is similar. Note that KP is a singular matrix.

To eliminate singularity in KP , the compatibility requirements and boundary conditions are
collected into the form of a constraint equation CuP = 0 , which is enforced by the introduction of
a Lagrangian multiplier λP into the energy functional ΠP of the system. The resulting governing
equation of the system becomes {

KP CT

C 0

}{
uP

λP

}
=

{
fP

0

}
. (17)

Noting the decomposition of KP and fP , the above equation becomes({
A
0

}
diag(Λ∆αP )

{
AT 0

}
+

{
K0 CT

C 0

}){
uP

λP

}
=

{
F
0

}
δP , (18)

where ∆αP = αP − α0, and K0 = Adiag(Λα0)A
T . Preferably, α0 is chosen as the midpoint of

the mean of αP . The Lagrangian multiplier λP denotes negative internal forces between element
nodes and common nodes, when the constraint is a compatibility condition; λP denotes reactions
at the supports, when the constraint is an essential boundary condition (Cook, et al., 2007).

3.2. Iterative enclosure approach

The decomposed governing Eq. (18) can be brought into the following compact form

Kg0u
P
g = Fgδ

P −Ag diag
(
Λ∆αP

)
AT
g uPg . (19)

By defining G = K−1g0 , the above equation is rewritten into the following fixed-point form

uPg = (GFg)δ
P − (GAg)

(
AT
g uPg ◦Λ∆αP

)
, (20)

where the following equality has been used

diag
(
Λ∆αP

)
AT
g uPg = diag

(
AT
g uPg

)
Λ∆αP = AT

g uPg ◦Λ∆αP , (21)

where ◦ means the element-by-element product of two vectors. The auxiliary variable vP= AT
g uPg ,

the following fixed-point form is more suitable for developing an iterative scheme

vP = (AT
g GFg)δ

P − (AT
g GAg)

(
vP ◦Λ∆αP

)
. (22)
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To obtain a guaranteed enclosure of vP , we start from the initial guess vP0 = (AT
g GFg)δ

P , and
proceed using the following approach

vPi+1 = (AT
g GFg)δ

P − (AT
g GAg)

(
vPi ◦Λ∆αP

)
. (23)

The iteration stops when vPi stops improving. Final solution uPgn is obtained by substituting AT
g uPg

in Eq. (20) with the converged vPn .
In the calculation, to reduce the overestimation, the deterministic matrices (GFg) and (GAg)

in Eq. (20) and (AT
g GFg) and (AT

g GAg) in Eq. (23) are prepared before the iteration starts.

The initial guess vP0 is obtained by multiplying the deterministic matrix (AT
g GFg) with the p-

box vector δP . During each iteration, firstly Λ∆αP is obtained by multiplying the deterministic
matrix Λ with the p-box vector ∆αP ; secondly Λ∆αP is multiplied element-by-element with the
p-box vector vPi to yield

(
vPi ◦Λ∆αP

)
; thirdly

(
vPi ◦Λ∆αP

)
is multiplied with the deterministic

matrix (AT
g GAg), which is further subtracted to the initial guess (AT

g GFg)δ
P . For each arithmetic

operations (+, −, ×, or ÷) in the calculation, if the two operands are known to be positively
dependent, θ = 0 for both the Clayton family and the Frank family; if they are know to be negative
dependent, θ = −∞ for the Clayton family and θ = −1 for the Frank family.

3.3. Random field modeling

In the above discussion, the p-box vector αP contains Young’s modulus for each element, and
the p-box vector δP contains all the concentrated forces and distributed forces for each element.
Usually these variables cannot vary independently, and it is necessary to describe this dependence
among entries in αP , δP , and other variables such as the displacement vector uP , the Lagrangian
multiplier λP , and the auxiliary variable vP .

In conventional probability theory, such dependence is described by the covariance or correlation
of random variables. Then covariance decomposition technique (or kernel decomposition) such as the
Karhumen-Loève expansion (Ghanem and Spanos, 1991; Zhang and Ellingwood, 1994) is applied to
the auto-covariance function (or auto-covariance matrix in the discrete case). The goal is to either
reduce the number of independent variables required to model the entire random field, or increase
the computational efficiency of the algorithm. However, as pointed out by Ferson, et al. (2004), this
is usually an over-simplification of the dependence of random variables in reality. The covariance
or correlation between two random variables is insufficient to describe the dependence. Instead, a
joint probability distribution in the form of either a joint distribution density function or a copula
is required to completely describe it.

In this paper, the Clayton family of copulas Cθ(u, v) and their duel C∗θ (u, v) are used to model
dependence between random field variables such as Young’s modulus (entries in αP ) and distributed
load (entries in δP ), as well as other variables such as αP , δP , uP , λP , and vP . The yielded
solution provides guaranteed lower and upper bounds on the CDF’s of the quantities of interest.
In the following numerical simulation section, a discussion on the performance of the proposed
hierarchical structure of the dependence modeling is presented.
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4. Numerical Examples

The algorithm discussed previously is implemented in the MATLAB environment. Two structural
problems are solved to illustrate the performance of the presented method: i) a fixed-end bar subject
to axial deformation and ii) a simply supported symmetric 15-bar truss. The current method is
compared with i) an interval Monte Carlo method (see Zhang, et al. (2012) for more detail) and
ii) an analytical solution (only available for the first example). The results show that the current
method is able to yield a conservative enclosure of the solution p-box with little overestimation,
considering any dependence among the uncertain variables.

 

A B 

P 

5 m 5 m 5 m 

 

Figure 1. A fixed-end bar subject to axial load at the free end.

4.1. A fixed-end bar

The first example is a fixed-end bar subject to concentrated load P at the free end, as shown in
Figure 1. The p-box for P is bounded from a normal distribution with an interval mean value
µP = [99, 101] kN and a standard deviation σP = 2 kN. The total length of the bar is 15 m, which
can be divided into three segments of equal length (i.e., L = 5 m for each). For each segment, the
cross section areas are A1 = 0.015 m2, A2 = 0.012 m2, and A3 = 0.010 m2, respectively. The bar is
made of copper, and Young’s moduli Ei (i = 1, 2, 3) of the bar are modeled as p-boxes bounded
by normal distributions. The interval mean value µE = [109, 111] GPa and the standard deviation
σE = 2 GPa. The actual interval mean and standard deviation of P and Ei are given in Table I.

Table I. Bounds on the mean and standard deviation of the contained CDF’s in the p-boxes. P
- concentrated load; Ei - Young’s moduli of the bar in Figure 1.

Concentrated load, kN Young’s moduli, GPa

Mean µP Standard deviation σP Mean µE Standard deviation σE

P [98.86, 101.14] [1.142, 3.136] E1 [108.9, 111.1] [1.142, 3.136]

E2 [108.9, 111.1] [1.142, 3.136]

E3 [108.9, 111.1] [1.142, 3.136]
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Figure 2. P-box solution for the axial force N1 (left half) and axial displacement u3 (right half) of the fixed-end bar
of Figure 1, obtained from different method: the current method assuming all dependency (solid lines), the analytical
solution (dashed lines), the current method assuming independence (dash-dotted lines), and the interval Monte Carlo
method from an ensemble of 100,000 simulations (dotted lines).

A simplified version of the algorithm proposed by Ferson, et al. (2005) is adopted to calculate the
interval bounds of mean and standard deviation. In the FEM discretization, the bar is modeled
by three truss elements. Since the bar is subject to axial deformation only, lateral displacement is
restrained.

The problem has four uncertain parameters, i.e., the concentrated load P and the Young’s moduli
Ei for each element. Now consider any dependence between the load and the Young’s moduli and
a positive dependence among Ei. The analytic solution to the problem is available. The structure
is statically determinate. The axial force in the bar is equal to the concentrated load P . The nodal
axial displacements

u1 = P

(
L

E1A1

)
, u2 = P

(
L

E1A1
+

L

E2A2

)
, u3 = P

(
L

E1A1
+

L

E2A2
+

L

E3A3

)
. (24)

Solutions obtained from the current method, the interval Monte Carlo method, and the analytical
solution from Eq. (24) are compared with each other. To ensure the accuracy of the solution, 50
focal elements are used in the discretization process. The interval Monte Carlo method include
100,000 simulations, in which the interval solver described in the thesis of Xiao (2015) is used.

All solutions report the same axial force, as shown in the left half of Figure 2. This is not
surprising, because the current method can handle load uncertainty without any overestimation
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Table II. Bounds on the mean and standard deviation of the contained CDF’s in the p-boxes. N1 - axial force; ui -
axial displacements of the bar in Figure 1.

Axial force N1, kN Axial displacement u1, mm

Mean µN1 Standard deviation σN1 Mean µu1 Standard deviation σu1

Current, all depend. [−101.13,−98.87] [1.142, 3.136] [0.2864, 0.3197] [0.0000, 0.0244]

Reference (analytical) [−101.13,−98.87] [1.142, 3.136] [0.2880, 0.3190] [0.0000, 0.0227]

Current, independ. [−101.13,−98.87] [1.142, 3.136] [0.2953, 0.3108] [0.0030, 0.0172]

Interval Monte Carlo [−101.14,−98.88] [1.127, 3.096] [0.2965, 0.3098] [0.0036, 0.0145]

Axial displacement u2, mm Axial displacement u3, mm

Mean µu2 Standard deviation σu2 Mean µu3 Standard deviation σu3

Current, all depend. [0.6381, 0.7255] [0.0000, 0.0595] [1.0586, 1.2141] [0.0000, 0.1033]

Reference (analytical) [0.6436, 0.7232] [0.0000, 0.0551] [1.0689, 1.2100] [0.0000, 0.0954]

Current, independ. [0.6637, 0.6999] [0.0048, 0.0380] [1.1055, 1.1673] [0.0068, 0.0631]

Interval Monte Carlo [0.6672, 0.6970] [0.0063, 0.0303] [1.1120, 1.1617] [0.0094, 0.0482]

due to the adoption of the M -δ method proposed by Muhanna and Mullen (2001). The right half
of Figure 2 compares the axial displacements u3 at the free end from different methods. Note
that solution obtained from the current method enclose the analytical solution, with very small
overestimation, while the interval Monte Carlo solution is enclosed by the current method a with
very large underestimation.

To illustrate that the difference is indeed caused by the inclusion of all dependency of random
variables, not by the overestimation in the current method, the solution obtained from the current
method assuming independence between random variables is added in Figure 2. Its difference with
the interval Monte Carlo solution is very small. Table II compares the interval bounds of the mean
and standard deviation of the axial force N1 and axial displacements u1, u2, and u3 obtained from
different methods. Some of the lower bounds of the standard deviation obtained from the current
method and the analytical solution are zero. This is consistent with the observation that those p-
boxes are able to enclose step functions, which correspond to zero standard deviation (the smallest
possible bound of the standard deviation of any probability distribution).

Table III. Computational time of the fixed-end bar (Example 4.1) and
the simple truss (Example 4.2) for different methods.

Fixed-end bar (s) Simple truss (s)

Fixed-point, all dependency 0.41 13.20

Fixed-point, independent 0.07 2.27

Interval Monte Carlo 573.93 907.68

Analytical solution 0.01 N/A
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Figure 3. An 8-joint 15-bar symmetric simple truss subject to point loads.

Table III lists the computational time of the current example (and the next example) for different
methods. The current method is more efficient than the interval Monte Carlo method.

4.2. A symmetric simple truss

The second example is a simply supported symmetric truss composed of 15 bars, as shown in Figure
3. The joints are labeled from 1 to 8, and the bars are labeled from 1 to 15. Point loads P1, P2, P3,
and P4 are applied at joints 5, 2, 6, and 3, respectively. They are bounded by normal distributions
with interval mean values µP1 = [199, 201] kN, µP2 = µP3 = [99, 101] kN, and µP4 = [89, 91] kN
and standard deviation σP1 = σP2 = σP3 = σP4 = 2 kN. Bars 1 to 3, 13 to 15 have the same cross
section area A = 1.0×10−3 m2, and all other bars, that is, bars 4 to 12, have a smaller cross section
area A = 6.0 × 10−4 m2. All the bars are made of steel and their Young’s moduli Ei are modeled
by p-boxes bounded by normal distributions with an interval mean value µE = [198, 202] GPa and
a standard deviation σE = 4 GPa. The corresponding actual mean and standard deviation of Pi
and Ei are given in Table IV.

Assume that the concentrated loads can be any dependence, and the Young’s moduli of the bars
are positively dependent with each other. No further assumptions are made. The axial forces in
bar 2 and bar 8 (i.e., N2 and N8) and the displacements at node 5 (i.e., u5 and v5) are solved and

Table IV. Bounds on the mean and standard deviation of the contained CDF’s in the p-boxes.
Pi - concentrated loads; Ei - Young’s moduli of the truss in Figure 3.

Concentrated load, kN Young’s moduli, GPa

Mean µP Standard deviation σP Mean µE Standard deviation σE

P1 [198.87, 201.13] [1.142, 3.136] Ei [197.7, 202.3] [2.285, 6.271]

P2 [98.87, 101.13] [1.142, 3.136]

P3 [98.87, 101.13] [1.142, 3.136]

P4 [88.87, 91.13] [1.142, 3.136]
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Figure 4. P-box solution for the axial force N2 (upper left) and N8 (upper right) and nodal displacements u5 (lower
left) and v5 (lower right) of the symmetric simple truss of Figure 3, obtained from: the current method assuming
positive dependence for Ei (solid lines), the current method assuming independence (dashed lines), and the interval
Monte Carlo method from an ensemble of 100,000 simulations (dotted lines).
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depicted in Figure 4. Again, 50 focal elements are used to discretize the p-box. Because there is no
simple analytical solution, the current method is compared with the interval Monte Carlo method
obtained from 100,000 simulations. For all the results, solution from the current method is wider
than the interval Monte Carlo solution and always contains it, even for the deterministic axial
force N2. This is not surprising, because the current method considers any dependence between the
random variables, while the interval Monte Carlo method can only consider the independent case.
Again, the solution obtained from the current method assuming independence between random
variables is very close to the interval Monte Carlo solution.

5. Conclusion

A new method is presented to solve linear system of equations with p-box entries, together with an
application to structural static problems for plane trusses. Uncertainties in the system are modeled
as p-boxes, which represent random variables whose CDF lie within the bounds of the p-boxes. The
results are also presented in the form of p-boxes. To reduce overestimation in the obtained bounds,
a matrix decomposition strategy and a fixed-point formulation are adopted, which are originally
used for solving interval linear systems. Numerical examples illustrate that the performance of the
current method is satisfactory.

Though the discussion is currently restricted to static analysis trusses, one of the simplest of
structure forms, the formulation can be extended to more complicated structures such as frames,
plane problems, plates, shells, etc., as well as other types of analysis such as frequency response
analysis, vibration analysis, transient analysis, structural damage detection, etc. The introduction
of p-boxes in the modeling of uncertainties in these problems will provide useful information about
the bounds on the statistical properties of the random variables, regardless of the dependence of
the uncertain parameters involved.
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Abstract: The focus of this paper is on the development and comparison of two interval ap-
proaches for real-time predictions of high dimensional structural processes, i.e. the prediction of
uncertain time variant displacement fields of a structure due to a few steering parameters. The
approaches are developed for simulation supported steering of mechanized tunneling processes but
can also be applied to similar problems in structural mechanics. Using interval data for uncertainty
quantification in mechanized tunneling is motivated by the geotechnical reports of tunnel projects,
where often ranges for the geotechnical data (dimension of soil layers) and some soil parameters
(e.g. modulus of elasticity, friction angle) are provided. For real-time simulations with interval
data, two surrogate modeling strategies (Proper Orthogonal Decomposition and Artificial Neural
Networks) are combined to substitute the structural simulation model, which is in the presented
application a process oriented 3D finite element (FE) model for shield tunneling taking into account
all relevant components of the construction process. The hybrid surrogate model is trained in the
offline (design) stage with patterns of interval data obtained with an optimization based interval
analysis. However, this approach is time consuming and not suitable for real-time predictions of
high dimensional output data, e.g. nodal displacements of a FE model. For real-time steering in
the online (construction) stage, the optimization based interval analysis is replaced by a direct
prediction with interval data using either midpoint-radius representation or lower-upper-bound
representation of intervals. Both approaches are presented in the paper and compared within a
verification example and an application example in mechanized tunneling. It is also demonstrated,
how these new surrogate modeling approaches for time variant interval fields can be applied in
case of polymorphic uncertain date (combination of interval and stochastic parameters) within the
probability-box (p-box) approach using interval Monte Carlo Simulation.

Keywords: surrogate models, real-time prediction, interval, probability box, finite element analysis

1. Introduction

Mechanized tunneling in urban areas must always consider the effect of the construction process on
the built environment, e.g. the risk of damage of existing buildings or infrastructure on the surface.
Currently, FE simulations are more commonly used in a deterministic framework to investigate and
predict the structural behavior in mechanized tunneling processes. For reliability analyses taking
the uncertainty of geotechnical parameters into account, multiple runs of the simulation model are
required, at least a few hundreds within optimization approaches for interval or fuzzy analyses or

c© 2016 by authors. Printed in Germany.
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up to 106 within Monte Carlo simulations, e.g., to predict failure probabilities. Hence surrogate
models are required to replace the FE simulation models with the aim to maintain the prediction
performance and to reduce the computation time significantly, especially for real-time applications.

Recently, in (Freitag et al., 2015), reliability analyses approaches in mechanized tunneling were
presented, taking polymorphic uncertain geotechnical data by means of stochastic numbers, in-
tervals and interval stochastic numbers into account. The analyses are performed with a hybrid
surrogate model (i.e. a combination of Proper Orthogonal Decomposition (POD) and Recurrrent
Neural Networks (RNN)), for deterministic input-output mappings within optimization based in-
terval analyses and interval stochastic analyses using Particle Swarm Optimization(PSO). The
hybrid surrogate model has the capability to predict (extrapolate) tunneling induced uncertain
time and spatially varying surface settlements, see also (Cao et al., 2016). Based on the RNN
predictions at selected monitoring points of the settlement field, the Gappy POD (GPOD) method
is utilized to approximate the complete surface settlement field. The optimization based interval
analysis approach is useful for reliability assessment in the design stage of a project, because
the computational time is between one and several hours using a standard laptop and increases
dramatically especially for a large number of outputs (e.g. settlements at all surface points). This
is because of the fact, that for each output two separate optimization problems have to be solved
to compute the corresponding lower and upper interval bounds.

In order to support the steering of the tunnel boring machine (TBM) during the tunnel con-
struction, the computation time of optimization based approaches may be inappropriate since
the computational time needs to be significantly smaller than the time required for one tunnel
ring construction stage, which is typically in the range between 2-4 hours. Therefore, a real-time
prediction should be performed in the ranges of seconds to some minutes to investigate the influence
of the steering parameters onto the outputs, e.g. surface settlements. This can be achieved by solving
the independent optimization tasks for each output in parallel, e.g. using a computer cluster or by
direct interval computations. Here, two interval computation approaches are presented.

The first approach is based on the midpoint-radius representation and is described in detail in
(Freitag et al., 2016). The idea is to develop separate surrogate models for predicting the midpoints
and the radiuses of the intervals. For the midpoints, the approach is identical to (Freitag et al.,
2015). Meanwhile, the radiuses are restricted to positive numbers. This is satisfied by selecting
activation functions with only positive outputs in the RNN part and by applying the Non-Negative
Matrix Factorization (NNMF) in the GPOD part of the hybrid surrogate model.

The second approach is based on the lower-upper bound representation of intervals. Whereas the
computation of the interval bounds with RNNs using interval arithmetic can directly be adopted
from (Freitag et al., 2011) (RNNs for fuzzy data), two separate surrogate models for the lower and
upper bound predictions are developed for the GPOD part, respectively. First, the upper bounds are
computed with the same approach as presented in (Freitag et al., 2015). But for the lower bounds
prediction, a constraint, not to exceed the upper bound, is defined within the GPOD approach.

The structure of this paper is organized as follows. Section 2 provides a short overview of the
process-oriented FE model for numerical simulations of mechanized tunneling processes. Polymor-
phic uncertain data models are introduced in Section 3. In Section 4, the concept of the hybrid
surrogate modeling strategy for time variant interval fields in mechanized tunneling is explained.
Consequently, Section 5 presents how interval data are processed with the surrogate model. The

REC 2016 - B. T. Cao, S. Freitag and G. Meschke

470



Real-Time Prediction of Structural Processes with Polymorphic Uncertain Data

verification and comparison of the two approaches with an analytical solution and an application
example are finally shown in Section 6.

2. Numerical Simulation of Mechanized Tunneling Processes

A process-oriented, three-dimensional, FE model is applied to simulate the tunneling process. The
simulation model is based on (Kasper and Meschke, 2004) and has been further developed to the
simulation model ekate, see e.g. (Nagel et al., 2010), using a more advanced and flexible software
architecture within the object-oriented FE framework KRATOS. All relevant components involved
in the mechanized tunneling process are considered, i.e the soil layers, existing structures, the shield
machine, the segmented lining, the face support, and the tail void grouting. The FE model follows
the tunneling construction stages during the numerical simulation, see also (Meschke et al., 2013).

The soil is modeled as a three or two phase material for partially or fully saturated soils re-
spectively, see (Nagel and Meschke, 2010). A surface-to-surface contact algorithm (Laursen, 2002),
which allows for a smooth advancement of the machine is employed to simulate the movement of the
TBM through the soil. Face support and grouting pressures are applied to ensure the stability of the
tunnel face due to distortions caused by the excavation process and to reduce ground loss behind
the tapered shield, respectively. The tail void grout is described as a fully saturated two-phase
material considering hydration-dependent material properties of the cementitious grouting material
as proposed in (Meschke, 1996). This formulation allows to model the infiltration of fluid grout into
the surrounding soil. After each TBM advance, the excavation at the cutting face, the tail void
grouting and the erection of a new lining ring during standstill are taken into account by deactivation
of soil elements an adjusting all boundary conditions to the new situation. The effect of existing
structures at the surface is accounted by adopting substitute models with equivalent thickness
and stiffness. In (Ninić, 2015), the model has been employed to perform in-depth investigations of
soil-structure interactions during mechanized tunneling processes.

3. Polymorphic Uncertain Data

Polymorphic uncertainty modeling allows to combine several uncertainty concepts to consider
aleatoric and epistemic sources of uncertainties within one numerical simulation, see e.g. (Graf
et al., 2014). The input space can be a combination of intervals, fuzzy numbers and stochastic
numbers (i.e. each input parameter is described by diverse uncertainty models), or some input
parameters are polymorphic uncertain itself, e.g. defined as p-boxes or fuzzy stochastic numbers.
Both situations of polymorphic uncertain input parameters can be treated in a similar way within
numerical simulations and require to combine stochastic and non-stochastic simulation approaches
and finally lead to imprecise stochastic responses (outputs), e.g. p-boxes, fuzzy stochastic numbers,
interval or fuzzy failure probabilities. In this paper, it is focused on real-time simulations with
interval data and its possible application within the p-box approach.
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3.1. Intervals

Geotechnical parameters with epistemic sources of uncertainty can be quantified by intervals or
fuzzy numbers. Here, it is focused on intervals

x̄ = [lx, ux] , (1)

which are ranges with lower bounds lx and upper bounds ux. The intervals can directly be obtained
from geotechnical reports, which often contain possible ranges for the expected geotechnical param-
eters. An alternative to the lower-upper bound representation of intervals is the midpoint-radius
representation, where the midpoint mx and radius rx of an interval x̄ is defined as

mx = lx+ ux

2
(2)

and

rx = ux− lx

2
. (3)

Interval arithmetic (Moore., 1979), the transformation method (Hanss, 2002), or optimization
approaches, see e.g. (Möller et al., 2000), can be utilized to compute with intervals. The interval
finite element method (IFEM) (Muhanna et al., 2007; Rao et al., 2011) has been developed for
applications in structural mechanics, see also (Moens and Vandepitte, 2005; Moens and Hanss,
2011) for an overview.

3.2. Probability Boxes

The probability box (p-box) approach, see e.g. (Ferson et al., 2003), allows to define imprecise
stochastic numbers by a lower bound lF (x) and an upper bound uF (x) cumulative distribution
function (cdf). In general, arbitrary stochastic models, including empirical distributions, can be
used for the lower and upper bound cdf. Each distribution, which is inside the p-box is valid.

3.3. Computing with Intervals and Stochastic Numbers

In order to compute with inputs defined as intervals and stochastic numbers, a combination of
stochastic and interval analysis is required. This can be performed by a stochastic analysis with
interval samples, e.g. by means of Interval Monte Carlo Simulation (Zhang et al., 2010). For each
interval sample, the structural response has to be computed by optimization-based interval analysis
or by approaches based on interval arithmetic, such as IFEM. In (Freitag et al., 2013), a surrogate
modeling approach based on artificial neural networks is presented, which is applied to replace a
time consuming optimization-based FE interval analysis within an Interval Monte Carlo Simula-
tion to compute p-boxes of structural responses and also fuzzy failure probabilities. This idea is
extended to a hybrid surrogate modeling approach for real-time surface settlement field predictions
in mechanized tunneling.
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4. Hybrid Surrogate Modeling Approach

During the tunnel advancement process, it is required to predict the surface settlement field in real-
time to support the decision of choosing appropriate operational parameters such as grouting and
support pressures. In (Freitag et al., 2015), a surrogate modeling strategy combining POD and RNN
approaches is proposed to predict time-variant high-dimensional outputs (surface settlement fields)
in mechanized tunneling. This hybrid surrogate model, which has been developed for deterministic
real-time input-output mappings in (Cao et al., 2016), is extended for predictions with interval data
in this paper. In Table I the proposed surrogate modeling strategy for interval data is summarized.

Table I. Hybrid surrogate modeling approach to predict time-variant interval settlement fields.

Offline stage

1: Create a numerical model representing a tunnel section

2: Define intervals for geotechnical parameters X̄ and scenarios for deterministic steering parameters [n]P

3: Run numerical simulations with different realizations of input parameters

4: Store the numerical results of the deterministic settlement fields

5: Define intervals of the geotechnical parameter X̄

6: Perform interval analysis (optimization approach) for different patterns of X̄ and scenarios of
deterministic steering parameters [n]P using the deterministic surrogate model

7: Store the lower and upper bounds of the interval settlement fields

8: Provide the interval settlement data of several monitoring points for RNN training and testing

9: Provide the interval settlement data of the complete settlement field for POD-RBF training and testing

Online stage

1: Input: an interval of the geotechnical parameters, the recorded history from time steps 1 to N of the
steering parameters and chosen values of steering parameters in the next time step N + 1

2: Approximate the bounds of the complete displacement field from time step 1 to N (by POD-RBF)

3: Predict the bounds of the interval settlements at selected points for next time step N + 1 (by RNN)

4: Predict the interval settlement field of next time step N + 1 (by GPOD)

5: Update the interval bounds of the complete settlement field from time step 1 to N + 1

6: Repeat steps 3 and 4 with updated values

In the offline stage, i.e. in the design stage of a tunnel project, deterministic input-output data
sets are collected by varying the input parameters of the numerical model ekate used to represent
the mechanized tunneling process within a tunnel section. The data sets are utilized to generate
a surrogate model with deterministic inputs (geotechnical parameters X, time-variant steering
parameters P(t)) and deterministic outputs (time-variant surface settlements S(t)). To capture
the uncertainty of geotechnical parameters by means of intervals X, the next step is to compute
the corresponding system outputs in the context of an interval analysis. This is accomplished by
employing the just-built deterministic surrogate model together with an optimization approach
(e.g. PSO). The obtained results are patterns of interval X and deterministic P(t) input data and
the corresponding interval output data S(t).
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In the online stage, i.e. during the tunnel construction, the interval bounds of expected surface
settlements have to be predicted by the surrogate model. For the prediction, the history of the
operational parameters is adopted for the time steps 1 to N and the interval settlement field is
computed based on chosen values of the steering parameters in time step N + 1. The complete
settlement field from time step 1 to N is approximated by trained POD-RBF networks for the
midpoints and the radiuses, respectively. For the predictions of several monitoring points at time
step N + 1, trained RNNs are employed for midpoints and radiuses (midpoint-radius representa-
tion) or upper and lower bounds (upper-lower-bounds representation). Finally, reconstruction data
techniques are applied to approximate the complete interval settlement field based on the outputs of
the two previous methods. For midpoint-radius representation, the GPOD and NNMF approaches
are adopted for the midpoints and the radiuses respectively. Meanwhile, upper bounds and lower
bounds of the surface settlement field are reconstructed to satisfy the constraint of generating valid
interval data by a constrained GPOD method. Finally, the predicted results are included into the
available data set and the procedure is repeated for the subsequent steps.

5. Processing Interval Data with the Hybrid Surrogate Model

This section briefly describes the computational approaches of each component of the hybrid surro-
gate model for interval data: process prediction (prediction the settlements of selected monitoring
points for the next time steps), field approximation by interpolating with complete data (approxi-
mation of the settlement fields from starting time step up to current time step) and reconstruction
missing data (prediction of complete settlement field for the next time step).

5.1. Process prediction with recurrent neural networks for interval data

For the approximation and prediction of dependencies between structural processes, recurrent
neural networks (RNNs) are beneficial. RNNs are able to learn dependencies between data series
without considering time as additional input parameter. This enables to capture time-dependent
phenomena in data series and predict (extrapolate) further structural responses. The layered net-
work structure of the RNNs is similar to the architecture of feed forward neural networks, see e.g.
(Freitag, 2015). In addition to the hidden neurons, so-called context neurons are used to consider
the structural history. For each hidden and each output neuron, a context neuron is assigned. These
context neurons send time delayed context signals to the hidden and output neurons.

In order to process interval data with RNNs, optimization approaches or interval analysis can be
applied, see e.g. (Freitag et al., 2011) to directly compute the lower and upper bounds by interval
arithmetic operations, see also (Freitag, 2010). An alternative to these approaches is the midpoint-
radius representation of interval data, where two separate RNNs for the midpoints and the radiuses
are generated, see (Freitag et al., 2016).
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Table II. POD procedure to find the basis vectors capture a desired accuracy.

Input: Given matrix S, desired accuracy E

Output: Truncated POD basis vectors Φ̂

1: Compute covariance matrix C = ST · S
2: Compute eigenvalue decomposition [Ψ,Λ] = eig(C)

3: Set Φi = S ·Ψ−,i/
√
λi, where Ψ−,i is the ith column of matrix Ψ

4: Set λi = Λii for i = 1, ...,M

5: Define K based on desired accuracy E as following
∑K

i=1 λi/
∑M

i=1 λi > E

6: return truncated POD basis Φ̂ by taking the first K columns of Φ

5.2. Field approximation with complete interval data

In general, interval data can be split using midpoint-radius or lower-upper-bounds representations.
If the latter is adopted, constraints are required to ensure that the prediction results for lower bound
are always smaller than the results for upper bounds. Meanwhile, the first representation requires
that the prediction for the radius component must be non-negative. In the paper, two separate POD-
RBF surrogate models for the midpoints and the radiuses are created to produce quick predictions
of the system response (i.e. the interval settlement field) corresponding to an arbitrary set of input
parameters (realisations of geotechnical interval parameters and deterministic steering parameters)
by interpolation between the sample data points. The basis idea of the POD approach and how to
combine the method with RBF to form a surrogate model are described in detail in (Freitag et al.,
2015). The below sections explain this procedure briefly.

5.2.1. Proper Orthogonal Decomposition
POD can be seen as a model reduction technique or as a widely used method in exploratory data
analysis. This approach aims to extract a compact representation of high-dimensional data by
projecting the data into a lower-dimensional space. The full orthonormal basis of the subspace can
be used to approximate the given set of data in an optimal least-squares sense. By truncating the
basis, cheap reduced order models or surrogate models are formed. POD approach has been known
under various name depending on the area of application such as: Karhunen-Loeve Decomposition
(KLD) (Karhunen., 1946; Loeve., 1978) in stochastics, Principal Component Analysis (PCA) in
data analysis (Hotelling., 1933) or empirical orthogonal function in oceanography and meteorology
(Lorenz, 1956). The procedure is explained in the algorithm in Table II.

A high-dimensional matrix S and a single column of S can be approximated as a linear com-
bination of the truncated basis vectors Φ̂ as S ≈ Φ̂ · Â and Si ≈ Φ̂ · Âi. At this step, truncated
“amplitude” matrix and vector, Â and Âi, contain constant values associated with the given matrix
S. Hence, only an approximation for snapshots that were generated in the original high-dimensional
snapshots matrix S is available.
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Table III. POD-RBF procedure to predict output system response from an arbitrary set of input parameters.

Input: Snapshots output matrix S, snapshots input matrix z, arbitrary input vector z∗, desired accuracy E

Output: System response vector S∗

1: Compute truncated POD basis Φ̂ based on E (see algorithm in Table II)

2: Compute fj(z
i) with zi = z∗ and i, j = 1, ...,M

3: Form matrix F from previous step

4: Compute Â = Φ̂
T · S

5: Compute B based on F, Â

6: Compute fj(z
∗) with j = 1, ...,M

7: Form vector F∗ from previous step

8: return System response vector S∗ = Φ̂ ·B · F∗

5.2.2. POD-RBF
To pass from discrete type of a response to a rather continuous one, each amplitude vector is
modified as a nonlinear function of input parameters on which the system depends. The amplitude
matrix Â can be related to interpolation functions by an unknown matrix of constant coefficients
B.

Â = B · F, (4)

F, being a set of predefined interpolation functions fj(z) of input parameters z, is given in the
following form Fi = [f1(z

i)...fj(z
i)...fM (zi)]T . The choice of fj(z) can be arbitrary and in this

study inverse multiquadric radial function, a type of RBF (see (Hardy, 1990) for a description), is
chosen as interpolation functions. An approximation of the output system response corresponding
to an arbitrary set of input parameters is obtained following the algorithm in Table III.

5.3. Reconstruction interval missing data

5.3.1. Midpoint-radius representation
For midpoint-radius representation, the missing midpoints are reconstructed by the unconstrained
GPOD and the NNMF approach is employed for the missing radiuses.

5.3.1.1. Unconstrained GPOD Another extension of POD based on a combination of basic POD
method with linear regression is called Gappy POD (GPOD). The method has been developed
in (Everson and Sirovich, 1995) to resconstruct human face images from incomplete data sets.
The complete vector for the entire grid is reconstructed by combining POD basis together with
gappy data (which is data given at very few of the grid points). Since there is no requirements
for the outputs of the method, it is refered to ”unconstrained GPOD” method in this paper. In
(Bui-Thanh et al., 2004), this methodology was successfully employed for data reconstruction in
the field of aerodynamic. The paper shows a very effective way to reconstruct the flowfields from
incomplete aerodynamic data set by using GPOD. The gappy POD procedure is described below.
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Without any missing data, an arbitrary snapshot Sj , which belongs to a set of snapshots, can
be approximated as a linear combination of the first K POD basis vectors Φ and an amplitude
vector Aj as described in subsection ”Proper Orthogonal Decomposition”. The amplitude vector
is calculated by minimising the error norm

min. ‖ Sj − Φ̂ · Âj ‖2L2 (5)

The same least square approach can be effectively used to restore missing data of an incomplete
data snapshot S∗ by

min. ‖ S∗ − Φ̂ · Â∗ ‖2L2 (6)

However, due to missing elements, the L2 norm in Eq. (6) cannot be evaluated correctly. As a
remedy, the Gappy POD procedure employs the concept of a gappy norm based on available data.
Firstly, the locations of missing data must be identified by a vector m as following

mi = 0, for locations of unknown or missing data

mi = 1, for locations of known data (7)

The gappy norm is defined with a gappy inner product (·, ·)n, such that

‖ Sj ‖2n= (Sj ,Sj)n = (m ◦ S∗,m ◦ S∗)L2 =‖ m ◦ S∗ ‖2L2 , (8)

where ◦ denotes point-wise multiplication. The complete (repaired) vector from S∗ can be repro-
duced using the assumption that S∗ can be characterized with the existing snapshots set S. The

intermediate repaired vector S̃
∗

can be expressed in terms of truncated POD basis vectors Φ̂ as
follows

S̃
∗
≈ Φ̂ · Â∗. (9)

The vector Â∗ can be computed by minimizing the error E = ‖ S∗ − S̃
∗
‖
2

n. A solution to this
so-called least squares or linear regression problem is given by a linear system of equations

M · Â∗ = R (10)

with

M = (Φ̂
T
, Φ̂)

R = (Φ̂
T
,S∗) (11)

Solving Eq. (9) with Â∗ computed from Eqs. (10) and (11), the intermediate repaired vector S̃
∗

is obtained. Finally, by replacing the missing elements in S∗ by these in S̃
∗

the complete vector of
output system responses is reconstructed. The step by step of GPOD procedure is shown in the
algorithm in Table IV.

5.3.1.2. Non-Negative Matrix Factorization For midpoint-radius representation of interval data,
the midpoint component is handled well with the unconstrained GPOD method described in previ-
ous section. Alternatively, the Non-Negative Matrix Factorization (NNMF) is utilized to ensure the
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Table IV. GPOD procedure to reconstruct the complete solution vector from incomplete solution vector.

Input: Snapshots output matrix S, mask vector m, incomplete solution vector S∗, desired accuracy E

Output: Complete solution vector S∗

1: Compute truncated POD basis Φ̂ based on E (see algorithm in Tabel II)

2: Compute M = (Φ̂
T
, Φ̂)

3: Compute R = (Φ̂
T
,S∗)

4: Compute Â
∗

from M and R

5: Compute S̃
∗

= Φ̂ · Â∗

6: return Complete solution vector S∗ by replacing missing elements from corresponding elements of S̃
∗

positive sign of the reconstructed results for the radiuses. The NNMF was first suggested by Paatero
and Tapper (Paatero and Tapper, 1994) as a concept of Positive Matrix Factorisation concentrating
on a specific application concerned with Byzantine algorithms. Modern NNMF algorithms can be
divided into four categories: Standard NNMF, Constrained NNMF, Structured NNMF and Gen-
eralised NNMF. In this paper, the Standard NNMF is utilized for radius predictions as described
below.

Given a (N×M) non-negative matrix rS and a reduced rank k, the NNMF algorithm is searching
for two non-negative matrices Wn×k and Hk×m that satisfies the following optimization problem

min.
1

2
‖ rS−W ·H ‖2F subject to,W,H ≥ 0. (12)

Similar to the POD approach, W and H are denoted as the basis matrix and coefficient matrix,
respectively. The alternating non-negative least squares (NNLS) algorithm proposed in (Kim and
Park., 2008), which ensures the convergence of the minimization problem in Eq. (12), is implemented
in this paper.

The reconstruction procedure for a non-negative vector containing the radiuses S+ now can follow
the steps listed in the GPOD method with some minor modifications. The corresponding objective
function E =‖ S+ −W · H+ ‖2n to be minimised contains the distances between the available
incomplete data vector and the predicted vector. The non-negative basis matrix W is assumed to
be known from the available non-negative data matrix rS. The coefficient vector H+ is obtained
considering the non-negativity constraint by solving the non-negative least squares problem

rM ·H+ = rR, (13)

with

rM = (WT,W)

rR = (WT,S+) (14)

The non-negative constrained least squares problem in Eq. (13) is solved by an algorithm introduced
in (VanBenthem and Keenan, 2004). Finally, replacing the missing elements in the incomplete vector
of radiuses, the complete or repaired radiuses vector of the system response is reconstructed.
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5.3.2. Upper-lower-bounds representation
For the upper-lower-bounds representation, the unconstrained GPOD and a constrained GPOD
techniques are utilized to predict the upper and lower bounds respectively. The unconstrained
GPOD described in the previous section can be applied for the prediction of either the upper
bound or the lower bound of the interval surface settlement field. In this paper, the upper bound

uS is chosen to predict first and the lower bound lS is approximated considering the predicted
result of upper bound as a constraint in the reconstruction procedure.

5.3.3. Constrained GPOD
In particular, the intermediate solution lÂ of the least squares problem in Eq. (10) needs to satisfy
a constraint as following

l
˜S ≈ Φ̂ · lÂ ≤ uS. (15)

This is done by implementing a quadratic programming algorithm, which uses an active set
method similar to that introduced in (Gill et al., 1981).

6. Examples

6.1. Verification Example

The proposed method for interval data is firstly illustrated with a benchmark from structural
analysis. Figure 1 shows the chosen example, which is a cantilever beam with a moving single load.
In this example, the interval bounds of the deflection S and the modulus elasticity of the beam

[9]P[1]P ...

a
l

l = 10 m
11 nodes
10 load positions

E = [30,36] GPa
I = 0.01 m4

Figure 1. Verification example.

material E = [30, 36] GPa are the outputs and inputs of the investigations. The single load [n]P
is considered as a time-variant parameter moving along the beam from node 2 to node 11. The
scenarios of changing [n]P in each time step can be arbitrary but the value of [n]P is assumed to
be restricted in a range from 10kN to 100kN. Given a scenario for stepwise moving load [n]P from
a=1,2,..,9 m, see Figure 2, the objective of this investigation is to predict the interval deflection of
the complete beam when Pt moves to the final position node 11, i.e. a=10 m. This is done with the
assumption such that only the interval deflection at nodes 2,6 and 10 (i.e. x=1,5 and 9 m) can be
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Figure 2. An arbitrary scenario of changing and moving load [n]P .

observed. The proposed surrogate model predicts the deflections at other nodes of the beam. The
predicted results are compared with the analytical solution given as

S =
Px2

6EI
(3l − x), for 0 < x < a, (16)

S =
Pl2

6EI
(3x− l), for a < x < l. (17)

In general, the interval bounds of the deflections for all beam nodes from step 1 to 9 can be
calculated using a deterministic surrogate model with an optimization approach. However, in this
example, the bounds S can be obtained directly from the above equations using interval arithmetic.
The verification procedure is done through the following steps:

1. The surrogate model is created based on results from 1600 snapshots which are obtained from
combining 8 different intervals of E and 200 scenarios of moving [n]P . Each snapshot contains
the interval displacements of 11 nodes of the beam from step 1 to 9. The snapshots data set is
divided into sets for midpoints and radiuses as introduced previously.

2. The interval deflections of complete beam nodes from step 1 to 9 corresponding to the given
interval of E = [30, 36]GPa and the scenario of changing [n]P from step 1 to 9, see Figure 2 are
initialized by the POD-RBF approach. These results are represented by two matrices mS and
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rS in the types of midpoints and radiuses respectively.

mS =



0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.017 0.162 0.037 0.108 0.066 0.365 0.090 0.239 0.855
0.042 0.519 0.130 0.394 0.243 1.375 0.341 0.915 3.289
0.067 0.908 0.251 0.799 0.506 2.900 0.727 1.966 7.105
0.092 1.297 0.377 1.262 0.824 4.811 1.221 3.329 12.104
0.117 1.687 0.502 1.735 1.170 6.981 1.796 4.941 18.091
0.142 2.076 0.628 2.209 1.522 9.279 2.425 6.741 24.867
0.167 2.465 0.753 2.682 1.873 11.599 3.080 8.665 32.235
0.192 2.854 0.879 3.155 2.224 13.918 3.740 10.652 39.997
0.217 3.243 1.004 3.629 2.575 16.238 4.400 12.649 47.957
0.242 3.632 1.130 4.102 2.926 18.558 5.060 14.646 55.950



rS =



0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.003 0.015 0.008 0.015 0.015 0.039 0.020 0.035 0.082
0.008 0.050 0.027 0.056 0.056 0.147 0.075 0.133 0.315
0.013 0.087 0.053 0.114 0.116 0.309 0.161 0.286 0.680
0.018 0.124 0.079 0.180 0.189 0.513 0.270 0.485 1.159
0.023 0.161 0.106 0.247 0.268 0.744 0.396 0.720 1.732
0.028 0.198 0.132 0.315 0.349 0.989 0.535 0.982 2.381
0.033 0.235 0.158 0.382 0.429 1.237 0.680 1.262 3.086
0.038 0.272 0.185 0.449 0.510 1.484 0.826 1.552 3.830
0.043 0.309 0.211 0.517 0.590 1.731 0.971 1.843 4.592
0.048 0.347 0.238 0.584 0.671 1.979 1.117 2.133 5.357


The upper and lower bounds of the interval deflection field are computed as uS = mS + rS
and lS = mS - rS. The errors between the predicted bounds and analytical solutions, which are
defined as following

error =

√√√√∑N
i=1(S

i
approx − Si

analytical)
2∑N

i=1(S
i
analytical)

2
× 100%, (18)

are 5.0% and 5.3% for the upper bound and the lower bound, respectively.

3. Finding the reduced bases of the matrices mS, rS, uS and lS. The POD procedure are performed
to obtain mΦ̂, uΦ̂ and lΦ̂ for the midpoint, upper bound and lower bound matrices, respectively.

REC 2016 - B. T. Cao, S. Freitag and G. Meschke

481



B. T. Cao, S. Freitag and G. Meschke

Whereas the NNMF approach is used to extract the reduced bases W for rS.

mΦ̂ =



0.000 0.000
0.009 0.053
0.034 0.173
0.073 0.302
0.125 0.406
0.188 0.452
0.258 0.411
0.336 0.266
0.417 0.046
0.500 −0.209
0.583 −0.470


W =



0.000 0.000
0.009 0.020
0.034 0.079
0.074 0.168
0.126 0.269
0.188 0.360
0.259 0.419
0.336 0.433
0.417 0.410
0.499 0.365
0.582 0.316


uΦ̂ =



0.000 0.000
0.009 0.052
0.033 0.170
0.073 0.300
0.125 0.405
0.187 0.452
0.258 0.413
0.335 0.267
0.417 0.047
0.500 −0.209
0.583 −0.471


lΦ̂ =



0.000 0.000
0.009 0.054
0.034 0.175
0.073 0.305
0.125 0.407
0.188 0.451
0.259 0.410
0.336 0.265
0.417 0.046
0.500 −0.209
0.583 −0.469



4. The patterns of input-output data at nodes 2, 6 and 10 of the beam are utilized for constructing
two separate RNNs to predict the midpoints and the radiuses for the interval deflections at these
selected nodes. With an arbitrary input scenario of changing the load Pt, the outputs, i.e. the
deflections at 3 selected nodes, are computed from these RNNs. A network structure with one
hidden layer containing 7 hidden neurons was sufficient to predict the midpoint. On the other
hand, the radius prediction requires a two hidden layers RNN with 7 neurons per layer. In
both networks, a delay of one time step has been selected for the context neurons. From the
midpoint-radius prediction results, the upper and lower bounds of the three selected nodes

uSRNN and lSRNN are calculated.

uS̄RNN =

 0.959
21.013
57.000

 uS̄an =

 0.967
20.833
56.700


lS̄RNN =

 0.800
17.607
47.730


lS̄an =

 0.806
17.361
47.250


The errors following Eq. (18) for upper and lower bounds approximation are 0.58% and 1.07%,
respectively.

5. Finally, the intervals of deflections of all 11 beam nodes in step 10 are predicted. The reduced
bases mΦ̂, W, uΦ̂ and lΦ̂ are the inputs of the procedure together with the incomplete vectors

mS∗, rS
∗, uS∗ and lS

∗. The outputs are the complete vectors mrS
∗

and ulS
∗

corresponding
to midpoint-radius and upper-lower-bounds approaches. These two vectors are compared with
reference analytical solution to verify the accuracy and effectiveness of the two methods.

As introduced previously, the computation of deflection intervals for the cantilever beam is
carried out with two approaches: midpoint-radius (mid-rad) and upper-lower-bounds (up-low). The
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Figure 3. Comparison of predictions from two approaches (mid-rad and up-low) with the analytical solution.

final prediction results of the deflections at step 10 for [10]P = 60 kN are

mrS̄
∗

=



[0.000, 0.000]
[0.800, 0.959]
[2.989, 3.838]
[6.657, 8.254]

[11.590, 14.047]
[17.607, 21.013]
[24.422, 29.043]
[31.874, 37.882]
[39.718, 47.289]

[47.730, 57.000]
[55.804, 66.725]


ulS̄

∗
=



[0.000, 0.000]
[0.800, 0.959]
[3.112, 3.715]
[6.798, 8.113]

[11.689, 13.949]
[17.607, 21.013]
[24.373, 29.093]
[31.800, 37.960]
[39.655, 47.352]

[47.730, 57.000]
[55.840, 66.689]


S̄
∗
analytical =



[0.000, 0.000]
[0.806, 0.967]
[3.111, 3.733]
[6.750, 8.100]

[11.556, 13.867]
[17.361, 20.833]
[24.000, 28.800]
[31.306, 37.567]
[39.111, 46.933]

[47.250, 56.700]
[55.556, 66.667]


Figure 3 illustrates the comparison of predictions using two representation approaches together with
analytical solution. It is shown, that both methods provide very good predictions for the upper and
lower bounds of beam deflection with errors of 0.61%, 1.18% from midpoint-radius representation
and 0.34%, 1.09% for upper-lower-bounds representation, respectively. In addition, the prediction
accuracy of the surrogate model is further validated by comparing 100 random validation cases with
the analytical results. The average error of all validation cases is around 1% or less for both bounds
and both methods, which proves the prediction capability of the surrogate model. Therefore the
generated surrogate model will be further applied to the analysis considering polymorphic uncertain
data, e.g.with in p-box approach. Here, the interval of E is fixed in the range from 30 GPa to 36
GPa, meanwhile the moving [n]P scenario is treated as a stochastic process. 1000 samples of moving
[n]P scenarios are randomly generated with the assumption that it follows a Gaussian distributed
process with a mean value of [n]P = 50 kN and the standard deviation of σ = 15 kN. Figure 4
depicts two curves, which are the minimum and maximum cdfs of the deflection of the beam at
node 11 for time step 10, respectively. With the new surrogate model, the results of this analysis
are obtained in only half an hour. This is a significant reduction in computation time comparing
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Figure 4. P-box for the deflection of the beam at node 11 for time step 10.

to the optimization approach which normally takes 10 hours to complete the analysis. This enables
the application of more advanced and complicated reliability analysis in engineering problems.

6.2. Application Example in Mechanized Tunneling

This section presents an application of the proposed surrogate modeling strategy for interval data
based on a synthetic example representing a mechanized tunneling process. The interval results,
which are computed from two representation approaches (mid-rad and up-low) are compared with
the reference solution obtained from an optimization approach shown in (Freitag et al., 2015)
in terms of prediction performance and computation time. The deterministic surrogate model is
firstly trained with numerical results from FE simulation model ekate described in Section 2. The
capability of the deterministic surrogate model is given with more details in (Freitag et al., 2015).
Consequently, the interval analyses with the optimization approach are performed to generate data
for the training of the proposed hybrid surrogate model with interval data to deliver predictions
for the interval bounds of the surface settlements in further time steps of the tunneling process.

The synthetic example simulating the construction by a tunnel boring machine (TBM) of a tunnel
section with 8.5m diameter and 8.5m overburden is generated using the ekate model. Figure 5 shows
the simulation model with dimensions of 48m, 170m and 56m (in x,y,z directions, respectively). The
length of each excavation step is 1.5m, i.e the tunnel section consists of 32 steps. The effect of two
existing buildings to the surface displacement field is taken into account by applying substitute
models with equivalent thickness of 5m and a stiffness of 50 GPa as shown in Figures 5. The
tunnel construction process is modeled via a step-by-step procedure consisting of individual phases:
soil excavation, applying support pressure, moving shield, applying grouting pressure and lining
installation.

The tunnel is completely excavated through soil layer 1 of a ground model comprising of two
parallel soil layers with different thicknesses and properties, see Figure 5. The groundwater table
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Figure 5. Numerical simulation model of a tunnel section (left) and investigates surface area (right).

is constant along the tunnel and at the ground surface. A time constant support pressure of 180
kPa is applied at the heading face. The grouting pressure [n]P in the tail void is considered with a
particular value in each excavation step. The soil behavior is described by an elastoplastic model
using Drucker-Prager yield criterion with a linear isotropic hardening. Linear elastic behavior is
assumed for the shield and tunnel lining.

In this study, the elastic modulus E1 of the first soil layer is taken as an uncertain parameter
defined by an interval as E1 = [45,52] MPa to be comparable with the reference result in (Freitag
et al., 2015),. The grouting pressure [n]P in each excavation step n is chosen as varying operational
parameter. The investigated ranges of these parameters are 20 to 110 MPa for E1 and 130 to 230
kPa for [n]P . It is assumed that the current state of the TBM advance corresponds to the 22nd

step of the process, i.e. n = 1, 2.., 22. The proposed surrogate model is utilized to predict the
complete settlement fields in time step 23. Based on the calculated surface displacements, only an
effective surface area of 42 m in y-direction from tunnel axis is investigated due to the fact, that
the displacements of points located further than this distance are almost zero. Figure 5 (right)
shows the investigated surface area with 105 points for which the Z-displacements are considered as
outputs of the proposed method. In the example, the interval settlements of 11 selected monitoring
points among 105 surface points are predicted by the RNNs with the approach of midpoint-radius
representation. Whereas, the complete surface field is reconstructed with both mid-rad and up-low
approaches.

Firstly, in the offline stage, 60 numerical simulations are performed to generate data for building
the deterministic surrogate model based on a combination of 10 particular values of E1 with 6
scenarios of changing [n]P from time step 1 to n. Then, possible intervals of E1 are selected and
an optimization based interval analysis is performed. The result of this interval analysis are used
to generate the proposed surrogate model. Now, in the online stage, the interval surface settlement
fields corresponding to the given interval of E1 = [45,52] MPa is computed in real-time.
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Table V presents the relative error in percentage for the upper and lower bounds from both
methods comparing to the reference solution in (Freitag et al., 2015). The errors are calculated by

error =

√∑N
i=1(S

opt
i − S∗

i )
2∑N

i=1(S
opt
i )2

× 100% , (19)

Table V. Relative prediction error for the two approaches.

Upper bound Lower bound

mid-rad up-low mid-rad up-low

Error [%] 8.9 8.0 6.2 5.9
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Figure 6. Typical interval field of tunneling induced surface settlements with Ē1 = [45, 52] MPa.

In Figure 6, the typical computed interval settlement field is represented by its lower and upper
bounds. The most important benefit of the proposed approach is, that the computation time is
significantly reduced compared to the optimization approach. To obtain the interval bounds from
the optimization approach, the required computation time is around 1.5 hours. The proposed
approaches needs only 2 seconds to predict the interval settlement field with similar accuracy.

7. Conclusion

In the paper, a hybrid surrogate modeling strategy based on RNN and POD approaches has been
developed to predict interval time variant settlement fields induced by mechanized tunneling taking
uncertain geotechnical parameters quantified as intervals into account. In order to achieve real-time
prediction capabilities, the hybrid RNN-GPOD surrogate model for deterministic data, which has
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been previously developed by the authors, has been extended to process interval data by means of
the midpoint-radius and upper-lower-bounds representations. Generally, both approaches produced
very good prediction in comparison to the optimization approach for interval analysis. However,
the computational time is significantly reduced from 1.5 hours by the optimization approach to
2 seconds by the proposed strategy. With such a fast response, it enables to quickly investigate
the consequences of certain process parameters on the expected settlements in the subsequent
excavation stages. Hence, the proposed strategy can by applied for real-time predictions to support
the machine driver in steering the TBM. The upper-lower-bounds approach will be extended for
fuzzy data. It is also planned to further develop a p-box approach for real-time applications.
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Abstract: Statistical uncertainties, arising from the uncertainty of parameter estimation and model selection, 
are often neglected in probabilistic assessment of engineering structures. However, few previous studies 
indicate that this might cause severe underestimation of extreme loads and lead to insufficient structural 
reliability. This contribution aims to qualitatively and quantitatively investigate the effect of this 
simplification on extreme values of wind speed that are commonly associated with design values. The 
probabilistic modelling of basic wind speeds is thoroughly investigated. Moderately high temporal resolution 
data – daily 10 min averaged maxima from three distinct one hour long measurement sessions – are obtained 
from the Carpatclim database, covering a 50-year observation period. Data for Budapest are taken into 
account as a representative example. Block maxima and peak over threshold approaches are applied to extract 
maxima and to fit associated distributions. Frequentist and Bayesian statistics are used to assess the effect of 
statistical uncertainties. The parameter estimation uncertainty is quantified by uncertainty intervals. Statistical 
model uncertainty is explored using different distribution types and taken into account by Bayesian model 
averaging. The conducted analyses imply that neglecting statistical uncertainties might yield to considerable 
underestimation of extreme values. Using the currently widespread annual maxima approach, the parameter 
estimation uncertainty can lead to underestimation of 1000-year return period values by about 20%. The 
commonly adopted Gumbel model yields 20% larger values with a return period of 1000 years than those 
based on the generalized extreme value distribution. The latter fits better to data though unambiguous, fully 
data-driven recommendation on model selection cannot be made. Bayesian posterior predictive distribution 
is recommended for accounting parameter estimation uncertainty. Moreover, if viable, smaller than one year 
block size, multiple maxima in a block, or peak over threshold methods are recommended to increase sample 
size and reduce statistical uncertainties. This leads to 70% reduction in the range of a 90% confidence interval 
for 1000-year extremes for the selected location. 

Keywords: Bayesian statistics, design value, extreme load, generalized extreme value distribution, model 
selection, parameter estimation, statistical uncertainty, wind speed 

1. Introduction 

MOTIVATION

Probabilistic models of extreme wind speeds are thoroughly studied by researchers from various disciplines, 
particularly by meteorologists. However, structural reliability requirements often substantially differ from 
interests of meteorologists, e.g. estimation of large (>1000 year) return period events and focus on prediction 
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rather than best fit to observations. For instance, extreme events dominating structural reliability may have 
return periods of thousands years as is a common requirement for structures in nuclear industry. Since 
observation periods are only small fraction of these return periods, extrapolation to unobserved ranges is 
inevitable. This can yield to highly uncertain model estimates at the critical tail regions. Nevertheless it 
appears that this uncertainty is commonly neglected in civil engineering while drafting standards or 
conducting probabilistic analysis. The aim of this paper is to investigate the effect of this neglect on 
representative wind speed fractiles and to find out whether the current practice is (reasonably) conservative. 
Scarcity of observations leads to aforementioned uncertainty for all random variables; hereinafter it is referred 
to as statistical uncertainty. It is reasonable to make distinction between two classes: parameter estimation 
uncertainty and model selection uncertainty. The former is concerned with the uncertainty of parameter 
estimation for a given model, while the latter relaxes this constraint by considering a group of candidate 
models and quantifying their “goodness”.

Previous studies show that the neglect of these uncertainties might cause severe underestimation of 
extreme loads and lead to insufficient structural reliability. For ground snow load ‒ using the annual maxima 
for inference ‒ a 1000-year return period value might be underestimated by 20% due to the neglect of 
parameter estimation uncertainty (Rózsás and Sýkora, 2015a), and the neglect of model selection uncertainty 
can lead to over an order of magnitude underestimation of failure probability (Rózsás and Sýkora, 2015b). 
Other studies found similar, often more significant effects in cases of extreme rainfalls (Coles and Pericchi, 
2003), extreme hydrological hazards (Sisson et al., 2006), and slope reliability (Li et al., 2015). 

In the following we critically review the current practice of extreme wind modelling in civil engineering 
and propose statistical approaches and a general rationale to quantify and incorporate statistical uncertainties.
The applied methods can be utilized for other extreme climatic actions such as flooding and snow loads. 

STATISTICAL MODELLING IN CIVIL ENGINEERING

Table I. reports a brief overview of current civil engineering practice in statistical modelling of extreme wind 
speeds. Features relevant for the present analysis are highlighted, e.g. applied method to extract extreme 
values and its parameters of the method, considered distribution type, treatment of statistical uncertainties 
and sources of information. More details are given in Section 2. 

The suite of Eurocodes lacks commentary or references to background documents. However, based on 
some paragraphs and background documents, it seems that statistical uncertainty has been neglected while 
drafting EN 1991-1-4 on wind actions on structures. To our knowledge this approach is applied to other 
actions too, e.g. point estimates are used to derive representative ground snow loads (Sanpaolesi, 1998) and 
thermal actions as well (Sanpaolesi and Colombini, 2005). Since annual maxima are typically used to infer 
probabilistic models, and to derive representative fractiles and partial factors in Eurocodes, this neglect might 
have considerable impact. 

The American load code ASCE 7-10 mentions the effect of statistical uncertainty – termed therein as
sampling error – on estimating basic wind speed from regional climatic data. However, no general 
justification is provided and the provision seems to be rather arbitrary. 
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Table I. Summary of civil engineering practices in statistical modelling of extreme wind speeds. 

Reference Method Distribution Variable Stat. uncertainty
EN 1991-1-4
(4.2)

Block method* Gumbel basic wind 
speed**

neglected

EN 1991-1-4
(E.10)

Block method* Weibull wind speed, wind 
induced cyclic 
loading

NA

JCSS Part 2.13 Block method*, annual maxima 
mentioned

Gumbel 
(Weibull)

wind speed 
maxima

neglected

(Niemann and 
Diburg, 2013)

Block method - annual maxima (9-
102 observations)

Gumbel, GEV wind speed 
annual maxima 

neglected 

(Kruger, 2010) Block method with annual maxima 
and peak over threshold method 
with various thresholds

GEV, GP, 
Gumbel, etc.

wind speed 
maxima

upper bound of 75% 
confidence interval of 
parameters

ASCE 7-10
Ch.26.

Block method* Gumbel basic wind 
speed**

guidance for regional data

*Judgement of the authors; **EN 1991-1-4: obtained from 10 minutes mean wind speed at 10 m above ground level in open country 
terrain, modified to account for the direction of the wind being considered and the season (if required), characteristic value 
corresponding to 50 years return period; ASCE 7-10: three-second gust speed at 10 m above the ground in open terrain prevailing in 
the upwind direction (detailed definition in the standard), the value given in the standard corresponding to 300-1700 years return 
period depending on occupancy category.

Kruger (2010) analyzed extreme wind speeds for South Africa and considered the effect of parameter 
estimation uncertainty. His approach is to upward adjust the estimated parameters by an appropriate 
confidence limit: 75% is recommended. This again seems to be unjustified, moreover a snow related study 
showed that this approach is not appropriate to account for statistical uncertainties and is usually non-
conservative (Rózsás and Sýkora, 2015c). This brief review indicates that parameter estimation and model 
selection uncertainties are commonly neglected or inadequately addressed in probabilistic reliability studies 
involving wind actions. 

ADOPTED APPROACH AND AVAILABLE DATABASE

Wind speed data from a representative location of the Carpathian Region are initially analyzed by accepting 
the widespread techniques and assumptions in civil engineering. Then advanced statistical analysis is carried 
out to quantify and incorporate statistical uncertainties and is considered to provide reference values. To 
explore the effect of statistical uncertainties, two different statistical paradigms are employed: frequentist and 
Bayesian statistics. Extreme value theory of mathematical statistics is used to extract extremes from 
observations and to select theoretically supported distribution functions. All models in this study are fully 
statistical, e.g. no physical arguments and principles are incorporated. 

The wind data under study are obtained from the Carpatclim database (Szalai et al., 2013), covering a 50-
year observation period. The climatological grid covers the region between latitudes 44°N and 50°N, and 
longitudes 17°E and 27°E. The data are gathered at 10 m height above the ground in horizontal direction from 
270 stations with relatively homogeneous spatial distribution. These are homogenized and spatially 
interpolated using meteorological and statistical models; these post-processed data are available in the 
database and used as inputs in this study. The database has moderately high temporal resolution: for each day 
maxima of 10 min averaged wind speed from three distinct measurement sessions spanning over one hour,
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and about 10 km spatial resolution. Note that the experience from detailed analyses of wind speeds indicates 
that annual maxima obtained from continuous measurements exceed those inferred from stations with the 
three measurement sessions per day by about 5 %. Obviously, this difference needs to be taken into account 
while deriving representative values for structural design, but is neglected in this study focused on comparison 
of various statistical approaches to modelling of extreme wind speeds. 

For the 50-year period more than 18000 observations for a grid point are thus available. The 10 min 
averaged value “is typically sufficiently long to incorporate most of the shorter period fluctuations in natural 
wind (turbulence) but is sufficiently short to be normally regarded as representing a period of near-constant 
background mean wind” (Harper et al., 2010; EN 1991-1-4).  

Budapest (E 19.1, N 47.5°) is selected as a representative location to illustrate the effect of parameter 
estimation and model selection uncertainty. It is characterized by a single type of wind phenomena – strong 
wind generated by thunderstorms. Thus unimodal distributions (no mixed models) seem to suffice for 
statistical modelling. 

2. Statistical Tools 

CONSIDERED DISTRIBUTIONS

Extreme value theory offers two popular approaches to analyze extremes: block maxima and peak over 
threshold methods. These are applied to extract maxima from wind speed observations and select asymptotic 
distribution functions (Coles, 2001; Reiss and Thomas, 2007): 

 If observations are divided into blocks and largest values are selected from each, the block maxima 
distribution asymptotically approaches the generalized extreme value family (GEV) under rather 
permissive conditions. This method is commonly referred to as block maxima method.  

 If values over a selected threshold are considered, the distribution of these values asymptotically 
approaches the generalized Pareto family (GP) under rather permissive conditions (Coles, 2001; 
Reiss and Thomas, 2007). 

For the block maxima approach with one year block size, two- (LN2) and three-parameter lognormal 
(LN3), and Gumbel distributions are used in addition to GEV. Gumbel is a special case of the GEV 
distribution with shape parameter converging to zero, and is commonly used in engineering to model extremes 
(Table I). Two-parameter lognormal distribution is found to describe well snow extremes, it is mainly applied 
in the US (ASCE, 2010). The LN3 distribution was successfully applied and propagated in the Czech 
Republic to model various types of extremes (Holický and Sýkora, 2015 and 2016). For block sizes different 
from one year, the GEV model is considered only. For multiple maxima in a block analyses, a multivariate 
generalized extreme value distribution (rGEV) is applied, considering the dependence between maxima in a 
block (Coles, 2001). In the peak over threshold approach, the GP distribution is used. The applied 
parametrization of these distributions are given in Table II. The parametrization has no effect on frequentist 
inference, however marginally affects the Bayesian estimates as priors generally differ for alternative 
parameterization of the model and flat (uniform) prior on scale and location parameters likely correspond to 
non-flat priors of moment characteristics. 
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Table II. Summary of considered distribution types, their application range, and parametrization. 

Distribution Application in this study Parametrization Reference
Gumbel block method; single maxima; 1-year block size scale and location (Coles, 2001)
GEV block method; single maxima; arbitrary block size shape, scale, and location (Coles, 2001)
rGEV block method; multiple maxima; 1-year block size shape, scale, and location (Coles, 2001)
LN2 block method; single maxima; 1-year block size shape and scale (Singh, 1998)
LN3 block method; single maxima; 1-year block size shape, scale, and threshold (Singh, 1998)
GP peak over threshold, threshold as a study parameter shape, scale, and threshold (Coles, 2001)

STATISTICAL INFERENCE

Frequentist and Bayesian statistical paradigms are selected to fit models and to quantify statistical 
uncertainties. Bayesian statistics treats parameters as random variables and assigns probability distribution to 
them. The latter is convenient when the inferred parameters are inputs and the full representation of their 
uncertainty is needed for instance in probabilistic reliability and risk analyses. Additionally it can handle 
complex problems with messy data and can combine information from different sources. These advantages 
distinguish it from the commonly used frequentist statistics that focuses on data variability given a parameter 
value (Spiegelhalter and Rice, 2009). 

The main instrument of Bayesian statistics is Bayes’ rule which incorporates the information conveyed by 
the data and prior knowledge through the likelihood function and prior distribution of parameters, 
respectively. The distribution of parameters obtained in this why is termed a posterior distribution. When 
future observations are to be predicted – as is typical in structural reliability studies – the posterior predictive 
distribution then serves this purpose by averaging over the posterior distribution of parameters (Aitchison
and Dunsmore, 1980). Parameter estimation uncertainty can be expressed by providing the whole posterior 
distribution or its credible intervals (Gelman et al., 2003). Model selection uncertainty can be handled through 
Bayesian model averaging where weighted average over candidate models is calculated. A weight (bi) is the 
probability of the ith model given the data relative to the summed probability of all considered models 
(Hoeting et al., 1999). The weights favor parsimony (Occam’s razor), i.e. penalizes model complexity.
Thereby overfitting can be avoided and models with different complexity can be compared. In the Bayesian 
analyses, flat (uniform) priors are used for all the parameters in Table II with practically infinite range; 
multiple parameter settings are verified to confirm convergence. 

In the frequentist paradigm, the maximum likelihood method is used to obtain point estimates. The 
uncertainty intervals – termed often as confidence intervals – are obtained by the delta method (Coles, 2001) 
and bootstrapping (Efron et al., 1994). A resampled empirical distribution function is created using linear 
interpolation among points within the data range. 

In general Bayesian inference requires substantially more computational power than frequentist 
approaches. Yet these calculations can be carried out on personal computers. The computational burden is 
even larger for structural reliability applications where uncertain tails of distributions are of crucial 
importance and their estimation requires much larger simulation numbers. Taking advantage of the small 
dimension (less or equal to three) of probabilistic models in this study, direct numerical integration is used 
for Bayesian inference. 
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3. Results of Analysis 

BLOCK MAXIMA

3.1.1. Annual maxima 
Initially representative fractiles for different distributions are calculated and compared. The selected extremes
correspond to 50, 100, 500, and 1000-year return period events. The 50-year event is the characteristic value 
of meteorological actions in Eurocode while the other are intended to indicate the design point coordinate of 
a structure subject to increasingly dominant wind action or with increasing structural reliability. They are 
comparable to representative basic wind speeds of ASCE 7-10 that associates 300, 700, and 1700-year return 
period values with risk categories I, II and III-IV, respectively. 

The point estimates of selected extremes with 90% uncertainty intervals are shown in Figure 1. Maximum 
likelihood point estimates (solid circle) and 90% confidence intervals are obtained by delta method (dashed) 
and bootstrapping (solid). The bootstrap point estimate is the mean of the sample with symmetrical intervals. 

Figure 1. Summary of representative wind extremes with 50, 100, 500, and 1000 years return period for various distributions.

The inference is conducted with one year block size using maximum likelihood method and the confidence 
intervals are estimated using delta method and bootstrapping. Although the 50-year extremes differ subtly 
only, the difference is not negligible. For instance the GEV and LN3 distributions yield to 7% lower extreme 
values than that of Gumbel. The range of 90% confidence intervals is 15% of the associated point estimate. 

The bootstrap and delta method confidence intervals match well. However, for larger return periods, their 
difference progresses particularly in respect of the lower interval endpoints: the delta method tends to provide 
more conservative estimates. This is partially due to the symmetric nature of delta method based confidence 
intervals. Confidence intervals are rapidly increasing with an increasing return period. The relative coverage 
of the 90% confidence intervals to point estimates is 35-40% for the three-parameter distributions; however, 
they are essentially the same: 15-20% for two-parameter ones even at 1000-year return period level. The 
difference among distributions in point estimates of 1000-year extremes reaches up to 18%. The results show 
that both distribution selection and parameter estimation uncertainty have substantial bearing on
representative extreme values. 
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The return period-return level Gumbel plots enable visualization of the effects of distribution selection 
and parameter estimation uncertainty. Return level plots with confidence intervals are shown in Figure 2. In 
the figure the maximum likelihood point estimates (white solid line) are accompanied by 90% confidence 
intervals (gray) obtained by the delta method1. The point estimate and confidence interval of the characteristic 
value vk along with the number of extreme observations are also displayed on each plot. 

 

 
Figure 2. Return level plots of annual wind maxima for the selected distributions. 

 
Although the difference between bootstrap and delta method based confidence intervals can be 

considerable (Figure 1), the latter is used only in further analysis for simplification. Estimates based on the 
delta method are deemed to be sufficiently accurate for this investigation. The confidence intervals are 
substantially widening as the cumulative distribution functions approach the regions with few data and 
regions of extrapolation. The difference between the models is remarkable, particularly the narrow confidence 
interval of the Gumbel distribution fails to include the largest observation.  

Statistical tests and information theory based goodness-of-fit measures do not clearly support or reject any 
of the considered distributions even though the tail of the Gumbel model noticeably deviates from the 
observations. The other distributions – particularly GEV and LN2 – seem to capture the upper tail better. 
However, this observation needs to be confirmed by analysis of data from more stations. 

However for the three-parameter models this is partially attributable to their greater flexibility that is 
traded-off by increasing parameter estimation uncertainty, i.e. they have wider uncertainty interval than the 
two-parameter distributions. For two-parameter models, available information allows better model 
identification. 

                                                      
1 The interval coloring is ‘ink-preserving’, i.e. the same ‘amount of ink’ is used for every vertical section, hence creating 
a linear transition from the narrowest (dark gray) to the widest interval (white). In a particular 2×2 or 3×2 figure, equal 
vertical ranges have the same color on each subplot, thus the models are directly comparable based on coloring as well. 
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The independence of wind speed maxima separated by about four days can be reasonably assumed (Simiu 
and Heckert, 1996). The focus on annual maxima may thus lead to the loss of information as extreme values 
generated by less severe storms are discarded, though they can be informative. This additional information 
can be incorporated by (i) reducing block size; (ii) considering multiple maxima in a block; and (iii) using 
values above a selected threshold. The first two belongs to the block maxima approach and converge to GEV 
or GEV-like (rGEV) distributions. The third procedure is commonly referred to as the peak over threshold 
method and its asymptotic distribution family is the GP distribution (section 3.2). Another approach to reduce 
sampling variability is to combine wind speed measurements from several stations with similar climatic 
conditions (Holmes, 1998). 
 
3.1.2. Block maxima with various block sizes 
Initially the effect of block size is examined. There is no universal rule to select an optimal block size. 
Typically the balance between bias and variance is searched. Smaller block increases sample size and thus 
reduces statistical uncertainties (variance) while non-extreme values might contaminate the sample and 
introduce bias to the inference.  

Figure 3 compares GEV distributions fitted to block maxima with a block size of 1, 1/2, 1/4 and 1/10 of 
year. The parameters are inferred using the maximum likelihood method. The point estimates (white solid 
line) are accompanied by 90% confidence intervals (gray) obtained by the delta method. The point estimate 
and confidence interval of the characteristic value vk along with the number of extreme observations are also 
displayed on each plot. 

 

 
Figure 3. Return level plots of wind maxima with different block sizes (Gumbel plot). 

 
With decreasing block size, smaller observations dominate the fit, yet the 90% confidence intervals still 

covers all the large observations at the right tail. It is interesting to observe that ten times more observations 
for the block size of 1/10 of year have no important effect on the confidence intervals of larger upper fractiles. 
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It seems that the one year blocks capture all the largest values and the enlargement of the sample does not 
reduce parameter estimation uncertainty in this case. The difference in characteristic value point estimates is 
subtle, at maximum 6% for 1/10 year block size compared to the one year model. However, the difference 
between these two models for the extremes with 1000-year return period progresses to 20%. A notable effect 
of block size reduction is the straightening of the point estimate of the distribution (white solid line), i.e. the 
shape parameter is approaching zero and the distribution approaches Gumbel distribution. 
 
3.1.3. Multiple maxima in a block 
Another technique aimed to increase a sample size considers multiple maxima in a block. This leads to an 
asymptotic multivariate rGEV distribution. It takes into account the dependence between largest values within 
the same block, i.e. the second largest must be smaller than the largest. Figure 4 summarizes the results of 
distribution fitting with number of largest values from 1 to 120 per block. The parameters are inferred using 
the maximum likelihood method. The point estimates (white solid line) are accompanied by 90% confidence 
intervals (gray) obtained by the delta method. Also shown in the figure are the point estimates and confidence 
intervals of the characteristic value vk along with the number of extreme observations. 

Though the number of observations is increased by 120-times, no effect on trends nor on bias in the 
extreme value-return period plots is observed. However, parameter estimation uncertainty appears to be 
significantly reduced; the uncertainty intervals for characteristic values reduce by 50% when a number of 
maxima in a block increases from 1 to 120. The reduction is more pronounced for extremes with longer return 
periods, e.g. it is 70% for 1000-year return period. The results show that valuable additional information can 
be extracted from the observations and the uncertainty intervals can be significantly reduced by increasing 
the number of maxima in a block. 

 

497



Á. Rózsás and M. Sýkora 

REC 2016 - A. Rózsás and M. Sýkora 

Figure 4. Return level plots wind maxima for various number of maxima in a block; rGEV is used for each plot. 

PEAK OVER THRESHOLD

In this section the peak over threshold method is used to extract extreme wind speeds for Budapest. Since it 
has different asymptotic distribution than the block maxima, the return value plot transformation is also 
different, though it has similar characteristics such as logarithmic horizontal scale and linear cumulative 
distribution if the shape parameter is approaching zero. The threshold selection is complex due to the trade-
off between bias and variance as is similar with the block size and multiple largest value selection for block 
maxima. Again lower threshold allows more observations, however they might not be representative for 
extremes and can introduce bias. 

Mean residual plot and parametric analyses (Coles, 2001) are utilized to assess the stability (variance and 
bias) of parameter estimates by changing the threshold level. These diagnostic plots suggest an appropriate 
threshold in the range from 5 to 15 m/s. Return value plots with six different thresholds from this region are 
presented in Figure 5. The thresholds are chosen to allow comparison with multiple maxima in a block (Figure 
4). The GP distribution supported by the extreme value theory is considered for the analyses only. The 
parameters are inferred using the maximum likelihood method. The point estimates (white solid line) are 
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accompanied by 90% confidence intervals (gray) obtained by the delta method. The point estimate and 
confidence interval of the characteristic value vk along with the number of extreme observations are also 
displayed on each plot. 

 

 
Figure 5. Return level plots wind maxima over various thresholds; GP is used for each plot. 

 
The results show that lower thresholds lead to narrower uncertainty intervals of the fractiles. However, 

this observation is difficult to generalize as for instance the uncertainty intervals for a threshold of 13 m/s are 
wider than those for 15 m/s. This discrepancy is attributable to the shift of a shape parameter from negative 
to positive values. The latter corresponds to a distribution without an upper bound which substantially 
increases the effect of parameter estimation uncertainty on larger fractiles. For smaller thresholds, this is 
gradually counterbalanced by the information conveyed by the additional data. Looking at the point estimates 
of characteristic values, only small differences (up to 2%) are found, thus this representative fractile is 
sufficiently stable in the investigated range of thresholds. The associated 90% confidence intervals are 
reduced considerably – by about 50% when the threshold decreases from 15 m/s to 5 m/s. This reduction is 
the results of a 150-times increased sample size. For larger return periods, the difference of point estimates is 
larger, it can reach 15% for a 1000-year return period compared to the 15 m/s threshold model. In respect of 
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bias, the 5 m/s threshold model still seems to be appropriate as all observations are within the confidence 
interval and the cumulative distribution function is rather stable. Note that these statements apply for the 
dataset under consideration, other locations might have more consistently varying shape parameter or larger 
bias at lower thresholds, thus the gain in variance reduction might not be attainable.  

Point estimates and confidence intervals obtained for the peak over threshold and multiple maxima block 
method are in good agreement. The outcomes indicate that parameter estimation uncertainty can be 
significantly reduced by using the peak over threshold method and incorporation of a great amount of 
additional data seems not to introduce considerable bias into the model. 

EFFECT OF PARAMETER ESTIMATION UNCERTAINTY

Uncertainty intervals provide only a visual insight into the effect of parameter estimation uncertainty. This is 
valuable, but cannot be directly used in probabilistic reliability and risk analyses where all uncertainties need 
to be taken into account. Therefore, it is more useful to infer the probabilistic distribution of model parameters 
and capture related uncertainties that can be further propagated and integrated in reliability analysis. This can 
be readily achieved by Bayesian analysis that treats parameters as random variables. Instead of giving the 
whole distribution function of uncertain parameters, the parameter estimation uncertainty can be directly 
incorporated into the distribution of the variable of interest (such as wind speed) by its posterior predictive 
distribution function. This approach is taken here in conjunction with popular analysis focused on annual 
maxima. The maximum likelihood, posterior mean, and posterior predictive distributions for Gumbel, LN2, 
LN3 and GEV are plotted in Figure 6. The posterior predictive is unique for each distribution type. 

Figure 6. Return level plots of annual maxima with maximum likelihood (dashed black, ML), posterior mean (solid black, PM), and 
posterior predictive (solid red, PP) distributions.
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For the two-parameter models, the effect of parameter estimation uncertainty is negligible even for large 
return periods (less than 3%). Likewise the effect on characteristic values is negligible for all the models.
However, the difference between posterior mean and posterior predictive 1000-year extremes is 12% and 
19% for LN3 and GEV, respectively. The results show that parameter estimation uncertainty has significant 
bearing on larger return period extremes for three-parameter distributions and non-conservative estimates are 
obtained when its effect is neglected. The plots also show the considerable difference in frequentist and 
Bayesian point estimates that is a result of the skewed posterior distribution of the fractiles. 

EFFECT OF MODEL SELECTION UNCERTAINTY

Although parameter estimation uncertainty seems to have substantial effect on large return period extremes
for three-parameter distributions, this uncertainty might not be of concern when the data can be described by 
Gumbel or other two-parameter models with sufficient confidence. This section examines this by calculating 
Bayes weights for each distributions under consideration. The weights express the relative goodness of 
models; i.e. the relative probability that a distribution is an appropriate underlying model for the observed 
variable from the considered pool of models.  

The calculated weights are 0.22, 0.30, 0.25, and 0.23 for Gumbel, LN2, GEV, and LN3 distributions, 
respectively. Hence, no distribution is clearly favored. Note that the weights and model averaging is 
conditional on the pool of candidate models. Figure 7 shows that Gumbel (max. 7%) and LN3 (max. 8%) 
distributions overestimate the model averaged one while LN2 (max. 8%) and GEV (max. 6%) distributions 
provide lower estimates. Both types of statistical uncertainty can be incorporated by averaging over the 
posterior predictive distributions of selected distributions. Note that the model averaged posterior mean is 
same for each distribution type and associated Bayes weights are indicated in Figure 7. 

Figure 7. Return level plots of annual wind maxima with Bayesian posterior mean (solid black, PM) and model averaged posterior 
mean (solid red, BMA-PM) distributions.
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4. Conclusions 

 
This contribution compares the current practice of extreme wind speed modelling in civil engineering with 
more advanced statistical techniques. The former neglects while the latter is capable of quantifying statistical 
uncertainties. Analysis of extreme wind speeds for the representative location of Budapest reveals that: 
 Considering the annual maxima approach, the parameter estimation uncertainty has negligible effect on 

extremes with long return periods for two-parameter distributions, but it is substantial for three-parameter 
models. Underestimation can reach up to 20% and the current design practice seems to be non-
conservative. 

 The popular Gumbel distribution yields about 20% larger 1000-year return period values than those based 
on the generalized extreme value distribution. The latter fits better to data, though unambiguous 
recommendation concerning distribution selection cannot be provided due to a limited amount of data. 

 Gumbel confidence intervals seem to be deceptively narrow and the largest observation is outside of a 
90% uncertainty interval. The generalized extreme value and generalized Pareto distributions imply that 
the wind maxima have an upper bound, however the 90% confidence intervals overlap with the 
unbounded region as well. 

 If viable, smaller than one year block size, multiple maxima in a block or peak over threshold methods 
are recommended to increase sample size and reduce statistical uncertainties. This leads to 70% reduction 
in the range of a 90% confidence interval for 1000-year extremes for the selected location. 

 Bayesian posterior predictive distribution is recommended for accounting parameter estimation 
uncertainty. Furthermore, Bayesian model averaging can be used to account for model selection 
uncertainty. 

The effect of statistical uncertainties on extreme values mainly depends on the available information for 
probabilistic models. This is particularly important for projecting environmental loads with few observations 
in a long-term perspective. The recommended procedure can be utilized for other extreme climatic actions 
such as flooding and snow loads. 
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Abstract: Structural failures caused by fatigue damage of several famous steel bridges lead to a wide 
concern to international bridge industry. A probabilistic fatigue damage modeling method was presented 
and applied to rib-to-deck details of steel box-girder bridges. In order to solve the time-consuming problems 
of the bridge finite element analysis under traffic flow loads, a response surface method was used to 
approximate the function between vehicle axle weight and the equivalent fatigue stresses with a few 
training data. Finally, the fatigue damage model was applied to the reliability assessment of steel box-girder 
bridges and the influence of traffic flow parameters on structural fatigue reliability was studied. The 
numerical results indicate that: the higher occupancy rate of heavy vehicles flow in the slow lane is the 
main reason for the decrease of the fatigue reliability of corresponding rib-to-deck details compared with 
the fast lane; the increase of the vehicle axle weight causes a rapid decrease of the fatigue reliability index 
of the steel box girders. When the annual linear growth factor increases from 0 to 1%, the fatigue reliability 
index of rib-to-deck detail in the slow lane decreases from 3.42 to 0.72. There is a promising application for 
stochastic fatigue vehicle flow model and the probabilistic model of fatigue damage. 

Keywords: steel box girder, stochastic traffic flow, response surface, fatigue reliability, rib-to-deck 

1 Introduction 

In recent years, structural failures caused by fatigue damage of several famous steel bridges lead to a wide 
concern to international bridge engineering (Wolchuk, 2011). However, under the continual growth of 
vehicle load, several existing steel box-girder bridges in China have suffered from fatigue critical problems 
(Pan et al., 2011). Since the vehicle load is random in nature, the vehicle induced fatigue damage of actual 
bridges is a stochastic process. It has been proved to be an urgent issue for probability analysis of fatigue 
damage of steel box-girder bridges subjected to random vehicle loads. 

For Long-term structural health monitoring system (SHMS), the sensors are expensive and sensitive to 
environment factors such as temperature. Besides, finite element method and laboratory fatigue test are 
common methods to acquire the fatigue stress spectrum. Zhang et al. (2011) indicated the influence of 
vehicle speed and road surface roughness on fatigue damage. Wang et al. (2013) studied fatigue 
performance of steel bridge and established probability model utilizing nondestructive detection technology 
and the fracture mechanics method. The typical fatigue truck load model specified in the native design 
codes are usually used to obtain structural stress spectrum (Castillo et al., 2014). However, the typical 
fatigue truck models with deterministic parameters are not suitable to conduct probabilistic fatigue analysis. 
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In fact, random traffic flow load is appropriate for probabilistic analysis. More effort should been done on 
the application of traffic flow load model on probabilistic modeling of bridge fatigue damage. 

In this paper, a fatigue truck load model is developed for probabilistic modeling of highway bridges. In 
order to solve the time-consuming problems of the bridge finite element analysis under traffic flow loads, a 
response surface method is used to approximate the function between vehicle axle weight and the 
equivalent fatigue stresses. Finally, the fatigue damage model is applied to the reliability assessment of steel 
box-girder bridges and the influence of traffic flow parameters on structural fatigue reliability is studied. 

 
 
 

2 Stochastic Vehicle Flow Model 
 

Due to the different national conditions, guidelines for Design and Maintain of Orthotropic Steel Deck in 
China recommends a four-axle fatigue vehicle with axle load of 50kN, 100kN, 90kN and 90kN. It is 
available to obtain fatigue damage values of structures via typical fatigue vehicle with deterministic load 
mentioned above, but it is not applicable for probability analysis.   

In general, the effective stress influence line for the orthotropic steel bridge deck is confined to the 
region between two diaphragm plats (which is 3.2m in this case study). (Deng et al., 2014). Thus, the 
parameters in the stochastic vehicle load have different influence on structural fatigue damage. It is 
acknowledged that vehicle weight, vehicle type, and driving lane have a greater influence on fatigue 
damage compared with vehicle gap and vehicle speed. Thus, it is appropriate to set the weight, vehicle 
configuration and driving lane as random variables. Therefore, the randomness of vehicle gap and driving 
speed are ignored. A framework illustrating the procedures of simulating the traffic flow is shown in Figure 
1.  

Vehicle parameters probabilitic 
model based on WIM

Vehicle type Ti determined by 
uniform distribution function 

Vehicle lane Li 

determined by uniform 

distribution function   

Axle load Wi 
determined by 
GMM toolbox

Generate the ith  
parameter vector of the 

vehicle Ci =[Ti ,Li,Wi ]

Generate traffic matrix 
F ={C1,C2,…,CN}

i=i+1

    i=1

 
Figure 1. A framework for stochastic traffic flow simulation based on the Monte-Carlo approach (In this article, GMM refers to 
Gaussian mixture model).  
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In Figure 1, probability model of vehicle was derived from data obtained by weigh-in-motion (WIM). 
In Matlab, uniform distribution and GMM functions are used to generate the truck sample. Vehicle matrix 
Ci was generated by three parameters, including driving lane Li, vehicle weight Wi, and vehicle 
configuration Ti. Finally, vehicle matrix F can be obtained in time domain.  

The statistic of vehicle of a highway bridge in China is shown in Table I. Note that vehicle with a less 
vehicle weight than 30 kN were ignored. The axle load of AW62 fitted by Gaussian mixture model (GMM) is 
shown in Figure 2. With these probabilistic models, the stochastic vehicle flow are simulated and shown in 
Figure 3. 

 
Table I. Statistics of vehicles of a highway based on the WIM system. 
 

Vehicle type Description 
Occupancy rate /% 
Vehicle 
type 

Slow 
lane 

Fast 
lane 

V1 Light car 34.64 36.64 63.36 
V2 Truck with 2 axles 26.12 84.58 15.42 
V3 Truck with 3 axles 8.58 91.08 8.92 
V4 Truck with 4 axles 10.24 96.42 3.58 
V5 Truck with 5 axles 4.93 92.60 7.40 
V6 Truck with 6 axles 15.49 98.08 1.92 
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Figure 2. PDF of the axle weight AW62.                                                Figure 3. A stochastic fatigue traffic flow sample. 

 
The establishment of stochastic vehicle flow model provides a basis for probability analysis of fatigue 

damage.   
 
 
 

3. Proposed Computational Framework 
 

Response Surface Method (RSM) is proposed to approximate the response function between vehicle 
parameters and structure fatigue stress. The advantage of the RSM approach is the efficient of 
computational effort because only small samples are involved in the computation. GMM model with 
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multiple parameters is used to approximate the PDF of fatigue damage. The computational framework is 
summarized in Figure 4. 

Uniform design data of 
small sample points of 

vehicle type
ViViV

Uniform design data of 
small sample points of 

vehicle type
Vi

 Stress time-history 
corresponding to each 

vehicle sample 

 Stress time-history 
corresponding to each 

vehicle sample 

Extract the stress cycle and 
make it equivalent to Seq Seq S

Extract the stress cycle and 
make it equivalent to Seq

Stochastic vehicle flow samples

Fit the response surface 
between the Seq Seq S  and i axle 

load of vehicle type Vi Vi V

Fit the response surface 
between the Seq and i axle 

load of vehicle type Vi 

The equivalent  stress range SeqSeqS
and  cycle index NdNdN corresponding

to traffic data of  large sample 

The equivalent  stress range Seq
and  cycle index Nd corresponding

to traffic data of  large sample 

Establish the GMM of bridge 
fatigue stress

Establish the GMM of bridge 
fatigue stress

Use EM algorithm 
to  estimate the 

maximum 
likelihood estimator 

of  the mean and 
variance

Use EM algorithm 
to  estimate the 

maximum 
likelihood estimator 

of  the mean and 
variance

Use the criterion  
AIC and BIC to 
determine the 

component number 
of the GMM

Use the criterion  
AIC and BIC to 
determine the 

component number 
of the GMM

Figure 4. Probability analysis process of fatigue stress. 

AWin refers to the nth axle load of the Vith vehicle type, EM represents the maximum expected value, 
AIC and BIC are Akaike information criterion and Bayesian criterion in information statistics, respectively.  
The crucial step in the flow chart is approximating the response surface between axle load and Seq. 

Structural response function is the kernel content for the RSM approach (Kang et al., 2010). In general, 
response surface method is used for approximate nonlinear function associate with small samples. Taking 
symbol of Vi for example, more than 2i+1 sample points is necessary to determine expression of response 
surface method. The general formulation of RSM approach is (Kang et al., 2010). 

2

1 1

( )
i i

jj j j
j j

Z G X a b X c X
 

                                                   (1) 

where, X is a random variable, which is axle load in this paper, a, b, c are undetermined coefficients. It's 
worth noting that establishment of response surface function is available only with 2i+1 times of finite 
element calculation. 

Once the time-history of stress ranges are obtained for the FE model, the optimal probability model of 
GMM for fatigue stress can be established based on Criterion BIC and AIC. The criterion BIC and AIC are 
available in Deng et al. (2014). 

4. Probabilistic Analysis of Fatigue Damage for Steel Box Bridge 

Fatigue damage of steel bridge, under vehicle loading, is manifested in the location of rib-to-deck(Chen et 
al., 2014). The rib-to-deck details is specified as number 71 in Eurocode3, the corresponding strength 
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coefficient proves respectively to be KC=7.16×1011, KD=1.90×1015. The following formulas are available on 
the basis of linear damage rule and S-N curve, with the introduction of equivalent stress-range Seq (Guo and 
Chen, 2011). 
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where ni is the number of stress cycles, for Si≥ΔσD. Otherwise it turns into nj. Deq is equivalent cumulative 
damage. Fatigue failure of the steel decks, mainly includes weld toe cracks and welding cracks. The finite 
element model of a standard girder is shown in Figure 5. 
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Figure 5. Finite element model of a steel box girder. Figure 6. Stress-time curves of roof U-rib of the steel box 

girder. 
 

In fact, the road surface has a certain effect on the fatigue stress. The loading area for the tires is revised 
as 3.4cm×33.4cm for the front wheels, and 73.4cm×33.4cm for the rear wheels. Stress-time history for the 
rib-to-deck details is calculated in FE model and shown in Figure 6. The vehicle driving speed is 20m/s. In 
Figure 6, σmin and σmax are the minimum and maximum stress time-histories. This stress time-history in 
Figure 6 obviously contains three peak values. They are corresponding to the location crossed by three 
vehicle axles. Seq could be obtained through disposing of aforementioned time-histories in accordance with 
rainflow counting method and Eq.(4). The response surface was approximated with Seq and AW31, AW32 
with Eq.(1). The simulated response function is shown in Figure 7. 
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Figure 7. Response surface of Seq and axle weigh of V3. 
Figure 8. Fatigue stress probability density of the rib-to-deck 
detail of driveway under the random traffic flow samples. 
 

Equivalent stress-range Seq of rib-to-deck for steel box girder, under the action of traffic samples, can be 
obtained with vehicle type corresponding to each response surface function. According to response surface 
algorithm, vehicles with three axles corresponds to seven sample points, while vehicles with six axles 
corresponds to thirteen sample points. Thus, the whole vehicle types correspond to fifty sample points. 
Using vehicle type V3 as an example, in the case, calculation time of the condition of one hundred thousand 
truck flow within 100 days requires 49 days, compared with 36 minutes with application of response 
surface method mentioned above. It can be verified that the introduction of response surface method can 
solve the time-consuming problem in fatigue stress analysis. 

In accordance with model establishment method of GMM shown in Figure 2, probability density curve 
of equivalent stress-range can be available shown in Figure 8. GMM parameters are illustrated in Table II, 
where ai refers to the weight of Gaussian mixture distribution, μi refers to the mean value of the ith 
Gaussian distribution function, σi is the standard deviation of the ith Gaussian distribution function. 

 
Table II. Parameters of GMM of Seq. 
 

a1 0.38 
a2 0.62 
μ1 9.43 
μ2 3.74 
σ1 3.44 
σ2 2.31 

 
In Figure 8, the probability density function of equivalent stress-range has approximately two peaks, 

The two peaks are corresponding to probability density function of axle load in Figure 2. They are 
associated with empty and full loading condition. With the probability density functions of Seq, GMM is 
better to approximate the PDF of fatigue stress compared with a single Normal distribution. In Table II, the 
two mean parameters of GMM, is associated with the two peak values of probability density in Figure 8. 

The probability model of the fatigue damage indicated the feasibility to analyze fatigue stress of steel 
box girder bridges under stochastic vehicle load.  
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5. Application of the Probabilistic Model: Reliability Assessment 
 

One of application for fatigue damage model under the action of stochastic vehicle flow is fatigue reliability 
assessment. Limit state function with vehicle flow parameters taken into consideration could be developed 
as follows, on the base of linear damage rule. 
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where n (unit in year) denotes the service time. w is transverse distribution coefficient of wheelmark. a is 
annual increase rate of axil weight. Δ stands for critical parameters for fatigue damage. pi and ni represent 
respectively occupancy rate and numbers of axletree of vehicle type i. ADTTsl is daily traffic volume. The 
statistical data of random variable X, associated with four parameters, is illustrated in Table III.   
 
Table III. Stochastic of random variables. 
 

Variable/Unit Distribution type The mean The standard deviation 
Sdeq/MPa GMM As shown in Table II 
Nd Normal distribution Eq(2) Eq(2) ×0.1 
Δ Lognormal distribution 1 0.3 
KD Lognormal distribution 3.47×1014 1.56×1014 
w Normal distribution 0.78 0.078 

 
In allusion to explicit functions shown in Eq.(3), reliability index, calculated by traditional first order 

second moment method, will encounter bigger errors, due to higher nonlinear frequency and various 
distribution types of random variables. In this paper, random samples obeying normal distribution, 
lognormal distribution and Gaussian mixture distribution functions were generated with the integration of 
Monte Carlo sampling method and MATLAB software. 

Firstly, variation tendency concerning fatigue reliability index and failure probability of rib-to-deck, at 
the location of slow and fast lane, has been analyzed in Figure 9, without the consideration of increase in 
axle load. 
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Figure 9. Fatigue reliability index of the rib-to-deck detail during the operation period. 
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As the Figure 9 illustrated, fatigue reliability index at rib-to-deck on slow lane drops from 6.29 to 3.42. 
With the growth of service time, although a downward trend of fatigue reliability index occurs both at rib-
to-deck on slow and fast lane, reliability index of  slow lane is relatively lower than that of fast lane. This 
occurs because more than 90% of trucks with at least 3 axis act generally on slow lane shown in Table 1. 

Due to the exponential relationship between axle load and fatigue damage, growth of the axle load will 
have great influence on fatigue reliability. With the annual growth factor of axle load—a set from 0 to 
1%，the variation tendency at rib-to-deck on slow lane is shown in Figure 10. 
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Figure 10. Influence of increase of vehicle weight on fatigue reliability index. 

 
As shown in Figure 10, fatigue reliability index at rib-to-deck of steel box girder drops rapidly under 

the consideration of growth of vehicle weight. With the annual growth coefficient of vehicle weight 
increasing from 0 to 1%, the corresponding fatigue reliability indexes in the 60th, 80th, 100th year are 
found to change from 4.43 to 2.01, 3.98 to 1.30 and 3.42 to 0.72 in the meantime. It can be found that 
fatigue reliability index drops along with the growth of the bridge service time in this regard. In conclusion, 
the service time and increase of axle load have significant influences on fatigue reliability of welded details. 

In the operation management of the bridges, particular attentions should be given to statistical analysis 
about operating vehicles. It is available to take certain measures to controlled traffic, based on the reliability 
assessment method described in this paper, when statistical parameters of vehicle grow excessively fast. 

 
 
 

6. Conclusion 
 

Fatigue truck models with deterministic parameters were developed to be a stochastic vehicle flow model. 
In order to solve the time-consuming problems of the bridge finite element analysis under traffic flow loads, 
a response surface method has been used to approximate the function between vehicle axle weight and the 
equivalent fatigue stresses with a few training data. A probabilistic fatigue damage modeling method was 
presented and applied to rib-to-deck details of steel box-girder bridges. Finally, the fatigue damage model 
was applied to the reliability assessment of steel box-girder bridges. Research results provide theoretical 
foundation for operation management and traffic restrictions of bridges. Main conclusions are summarized 
as follows. 

(1) Stochastic vehicle flow model involving statistical characteristics of vehicles has a certain 
application prospect in probability analysis of fatigue damage for steel bridge and reliability assessment. 
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(2) Higher occupancy of heavy vehicle on slow lane has been proved to be significant cause, which 
leads to fatigue reliability index of slow lane much lower than that of fast lane. 

(3) The growth of axle load results in rapid decline in fatigue reliability index of steel box girder. As the 
annual growth factor of vehicle weight increase from 0 to 1%, fatigue reliability index of the 100th year 
drops from 3.42 to 0.72. 

Still at issue is influence which vehicle speed and road surface roughness, in stochastic vehicle flow 
model, make on fatigue damage. Growth factors of traffic volume and vehicle weight remain to be 
integrated by long-term monitoring data. 
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Abstract: Long-span highway bridges simultaneously suffer from a large number of vehicle loads. With 
the ever-increase of the traffic loads, the safety problem of the in-service bridges is particularly serious. A 
framework for analysis the dynamic reliability of long-span bridges under stochastic traffic flows was 
proposed. The framework integrates the monitored traffic data, vehicle-bridge interaction theory, and 
dynamic reliability theory. A suspension bridge with main-span of 820m was chosen as an engineering 
prototype for the purpose of illustrating the feasibility of the proposed framework. The numerical results 
indicate that: the stochastic traffic flow model is appropriate to be applied in reliability analysis of bridges, 
because the probabilistic information was included in the stochastic traffic flow. The corresponding 
probabilistic model of dynamic response of bridges can be obtained by the numerical simulation of vehicle-
bridge interaction. The busy traffic flow was demonstrated to be the main reason for the displacement first 
passage failure of the suspension bridges. Furthermore, the failure probability increases with the growth of 
the occupancy rate of the busy traffic flow in the daily traffic flow. 

Keywords: dynamic reliability, stochastic traffic flow, suspension bridge, first-passage, root-mean-square 

1. Introduction

In recent years, a steady increase in the vehicle volume and cross vehicle weight, which has been caused by 
the rapid growth and expansion of urban developments and subsequent increase in inter-city and interstate 
transportation, have caused a threat to the safety of bridges (Chen and Wu, 2010). The overloading traffic 
due to this vehicle volume increase has become the main factor resulting in shortening the service life and 
even causing collapse of bridges in most countries (Deng et al., 2015). With the widespread increase of 
vehicle volume and cross vehicle weight, several in-service bridges built decades ago, utilizing the old 
design codes, are damaged or even collapsed. Therefore, the structural safety of existing bridges caused by 
sustainable growth of traffic volume and assessing the load-carrying capability are serious issues that 
should be carefully studied. 

The commonly used method for the evaluation of the vehicle load in bridge design and safety 
assessment are specifications in the national design codes developed in the individual countries. The 
practical application of these codes have proved to be successful as they allowed for keeping in operation 
many bridges that no longer met the design criteria but were otherwise able to safely carry the applied 
loads. Because of the success of these national codes and more recent research findings the possibility of 
developing a new Eurocode for bridge safety assessment is under consideration. In the design 
specifications, the vehicle loads were calculated based on the statistical data of collected from large volume 
of vehicles in multiple regions. Due to changes that have occurred in the traffic flow and volume in recent 
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years, these data may no longer be suitable or relevant for all existing bridges. Some the shortcomings are 
for instance the design loads considered in these codes which do not take into consideration the random 
nature of the actual vehicle flow and vehicle loads (Bu et al., 2006). There are additional shortcomings in 
the existing codes. For instance, the design load considered in these codes are based on an overall 
estimation of the number of vehicles. Thus, although slender long-span bridges may carry a large number of 
heavy trucks simultaneously, this factor has not been considered in these code. Traffic flow is a more 
realistic model to simulated vehicles passing over lender long-span bridges instead of vehicle load that is 
based on estimating the number of vehicles (Han et al., 2015). Subsequently, a more realistic vehicle model 
with a focus on estimating traffic flow should be developed and incorporated. Stochastic traffic flow is the 
most effective and realistic model that needs to be considered especially for long-span bridges since the 
random loading caused due to traffic flow results in direct and severe vibration of bridges, compared with, 
and in contrast to, the transient vibration of a single vehicle. There are uncertainties associated with the 
vehicle physical parameters as well as its dynamic characteristics. Xiang et al. (2007) evaluated the bridge 
structural reliability considering the vehicle-bridge dynamic interaction, however, the reliability evaluation 
method that they utilized is a traditional static reliability method which does not take into account the 
random vibration of the bridge caused by the road surface roughness and the bridge-vehicle interaction. 

This paper aims at developing a general framework to evaluate the reliability of long-span bridges 
subjected to stochastic traffic flows utilizing the first-passage approach formulated on the basis of Rice’s 
formula. As the first step, three types of stochastic traffic flow, including free flow, moderate flow, and 
busy flow, are simulated adopting the cellular automation approach and weigh-in-motion data. Under the 
long-time effect of simulated traffic flows, the stochastic characters of the dynamic behavior of bridges are 
simulated and computed utilizing a simplified traffic-bridge interaction theory. Finally, a suspension bridge 
with a mid-span of 820m is selected to conduct a numerical study, which includes incorporating a large 
number of traffic parametric studies, such as traffic density and service time. 

2. Theoretical basics

2.1 VEHICLE-BRIDGE INTERACTION 
The vehicle model and bridge model are established separately and combined with their coupling 

equations. For the vehicle models, the transitional method is adopting several mass blocks, springs, and 
damping dashpots. The full vehicle model, half vehicle model, and quarter vehicle model were defined by 
many researchers (e.g. Yin et al., 2012). In order to simplify the illustration in the present paper, a half 
vehicle model is shown in Figure 1. 

Figure 1. A half vehicle model in the study. 
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More details for the half vehicle model as well as the relevant information can be founded by Yin et 
al. (2012). The general coupled equations of the vehicle-bridge system can be constructed through a 
relatively lengthy derivation as 
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where, Mv, Cv, and Kv are the mass, damping, and stiffness matrices of the vehicle, respectively; Mb, Cb, and 
Kb are the mass, damping, and stiffness matrices of the bridge, respectively; uv and ub are the displacement 
of the vehicle and the bridge, respectively; Fvg and Fbg are the self-weight of the vehicle and the bridge, 
respectively; Fvb and Fbv are the vehicle-bridge interaction forces. 

Currently, many studies on the multiple-vehicle effects on bridges suggest that the interaction effects 
between different vehicles on the same long-span bridges, such as cable-stayed bridges and suspension 
bridges, are insignificant. Furthermore, the dynamic interactions between different vehicles may become 
negligible. Therefore, individual vehicle may be approximated as a directly applied force on the bridge, 
independent of other vehicles. An equivalent dynamic wheel loading (EDWL) approach was presented by 
Chen and Wu (2007). Replacing the physical moving vehicles on the bridge by EDWL, the fully coupled 
equations in Eq. (1) can be simplified to 

wheel
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  (3)

where, Rj, Gj, xj, and dj are the dynamic wheel ratio, self-weight of the jth vehicle, longitudinal location, 
and transverse location of the gravity center of the jth vehicle on the bridge, respectively; hk and ak are the
kth vertical and the torsional mode shapes of the bridge. The total number of vehicles nv changes with time 
depending on the simulation results of the stochastic traffic flow. The feasibility analysis has been 
conducted by Chen and Cai (2007) by comparing the bridge response estimations using fully coupled 
interaction analysis and the EDWL approach.

Due to the random nature of the traffic loads, the bridge responses under stochastic traffic flow are 
random processes (Wu and Law, 2011). Consequently, a convergence analysis is required for the purpose of 
obtaining rational estimations of the probabilistic dynamic behavior of the bridge response. In addition, the 
displacement of long-span bridges highly depend on the vehicle density (Chen and Wu, 2010). Even 
through the vehicle density is time variant in one day, the interval vehicle density exhibits stationarity in a 
time domain. On this basis, the traffic model can be divided into several models in the time domain 
according to the statistics of the traffic density. Once the traffic model is determined, the sample of the 
responses will exhibit ergodicity on the premise of a long analytical time. 

2.3 FIRST-PASSAGE FORMULATIONS
The first-passage probability, which describes the probability that a scalar process exceeds a 

prescribed threshold during an interval of time, is of great engineering interest. The probability is essential 
for estimating the serviceability reliability of bridges. The first-passage probability of a zero-mean 
stochastic process X(t) over a prescribed double-sided threshold |x|=a during an interval time t∈(0, τ) can 
be written as

0( , ) ( max ( ) )tp a P a X t



 

  (4)
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In general, there is no exact solution for the probability. Rice (1945) adopted Poisson assumption to 
approximate the probability of Eq. (4) and presented the well-known Rice’s formula. For the random 
vibration of bridges under traffic loads, the mean value of responses of bridge beams are greater than zero 
in theory, while they are far less than threshold a for a safety design. In this case, the crossing rate under the 
threshold –a can then be written as

2

2

( )( ) exp( )
2π 2

XX

X X

a Ev a


 

 
  ( ) exp( )( ) exp( )X( ) exp( )( ) exp( )  ( ) exp( )( ) exp( )  ( ) exp( )( ) exp( )X( ) exp( )  ( ) exp( )X( ) exp( ) (5)

where, Ex is the mean value of random process X,  XX is the derivation of X, X and 
X X

are the root mean 
square of X and XX , respectively. Note that the Rice formula adopts two assumptions including the over-
crossing theory and the Poisson distribution. Thus, the validity for applying to this study should be further 
investigated by comparing to the Monte Carlo simulation. In the present study, the results calculated by the 
Rice formula can be considered as references.  

Considering the density of stochastic traffic flow, the first-passage probability of bridge girders 
under multiple types of traffic flows can be written as 
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(8)
where, the entire time T is divided into n intervals indicated as ti according to the density of stochastic 
traffic flow, such as free traffic flow, moderate traffic flow, and busy traffic flow; vi and ρi correspond to the 
crossing rate and occupancy of the ith traffic term, respectively; X(i) and ( )X i( )X i( )X i( ) denote the structural 
response and the corresponding time derivative under the ith traffic term, respectively; and σx(i) and 

( )X i


( )X i( )X i( ) denote the RMS of the X(i) and ( )X i( )X i( )X i( ) , respectively. 

3. Case study 

3.1 WEIGH-IN-MOTION SYSTEM

A weigh-in-motion (WIM) system utilizes scales or pressure sensors embedded into the road 
pavement to measure parameters of crossing vehicles such as axle weight and speed. These systems are 
widely used in highways for the purpose of controlling heavy traffic load such as overloaded trucks. 
Statistical approaches are adopted to establish the probability model of the axle weight, speed, vehicle type, 
and/or other relevant information with these vehicle data. In general, both the vehicle type and vehicle 
speed fit normal distribution, the axle weight fits a bimodal distribution, and the vehicle gap, i.e., the gap 
between two vehicles in a lane, fits a Gamma or Weibull distribution depending on the vehicle density. The 
bridge loadings models are closely related to vehicle gross weights, axle weight and axle spacing (Miao and 
Chen, 2002). Although thousands of vehicles cross a the bridge every day and the vehicle types, gross 
vehicle weights and axle weights are quite different, statistical characteristic can be obtained via the big 
data of these parameters. If the mathematical distributions of these parameters can be obtained accurately, 
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bridge live load models can then be easily formulated. A WIM system used in this paper is shown in Figure 
2. A diagram illustrating the relationship between the vehicle and the WIM is shown in Figure 3.  

 

                
 

Figure 2. A WIM system.                                                                             Figure 3. A truck passing on a WIM system. 
  
 This system has been working about 5 years and more than ten million vehicle data has been collected. 
According to the axle configurations, all vehicles collected from the WIM data can be classified into 6 
categories. Taking vehicle type 6 (with 6 axles) as an example, its corresponding probability models for 
axle weight are show in Figure 4, where the axle weight of the vehicle type 6 AW64 follows a Gaussian 
mixture distribution. The simulated stochastic traffic flow is shown in Figure 5. 
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Figure 4. Probability density of parameters in V6.       Figure 5. Simulated stochastic traffic flows. 
 

 The vehicle density strongly depends on vehicle gaps that changes greatly during the day and night, but 
it follow the peoples’ daily life style, which means people usually go out in the morning and return in the 
evening.  Thus, in order to establish the probability model of the vehicle gaps, the traffic flow is divided 
into three parts: free traffic, moderate traffic, and busy traffic, according to the vehicle volume per hour. 
With the WIM data of three typical dates, the boundary line between busy traffic, moderate traffic, and free 
traffic is determined as 400 vehicles per hour and 200 vehicles per hour in a driving direction. It can be 
found that the time of busy traffic flow is about 4 hours (occupancy rate ρ1=17%), the time of moderate 
traffic flow is about 6 hours (occupancy rate ρ2=25%), the time of free traffic flow is about 14 hours 
(occupancy rate, ρ3= 58%).  
 
 

WIM 
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3.2 A SUSPENSION BRIDGE 
A long-span highway bridge in Sichuan province of China named Nanxi Yangzi River Bridge is shown 

in Figure 6. A WIM system was installed on the suspension bridge. 
 

200m 820m 240m

Yibin Island Luzhou Island

AnchorageTunnel anchorage

14
5m 82

m

WIM sensors

 
 
Figure 6. Elevation layout of the prototype bridge. 
 

In order to perform the dynamic response analysis of the prototype bridge under traffic flow, a finite 
element model was established using ANSYS software. The model is shown in Figure 9, where the Beam44 
element was used to simulate the steel box girders and towers, and the Link10 element was used to simulate 
the cables and the hangers. The roughness displacement was derived after the adoption of roughness factor 
of 20×10-6m3/cycle for good road condition as shown in Figure 7.  

 

 
 

Figure 7. Finite Element Model of Nanxi Yangtze River Bridge. 
 
3.3 RESULTS AND DISCUSSIONS 

With the combined use of EDWL approach and the transient analysis function of ANSYS software, 
the time-history of the suspension bridge girders were obtained and shown in Figure 8. From Figure 8 it can 
be found that the L/4 girders vibrate seriously compared with L/2 girders. Furthermore, the displacement of 
a certain girder under busy flow is larger than that under free flow, which means that the vehicle density has 
significant impact on the displacement of the girders. The mean value of the displacement under busy flow 
is larger than that of the moderate flow and free flow. 

520



Dynamic Reliability Assessment for Long-Span Bridges under Heavy Stochastic Traffic Flows 

REC 2016 - N. Lu, M. Noori and M. Beer 

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

Time(s)

D
is

pl
ac

em
en

t(m
)

 

 Free flow
Moderate flow
Busy flow

 

0 205 410 615 820
-0.1

0

0.1

0.2

0.3

0.4

0.5

Location of girers (m)

RM
S 

(m
)

 

 Free flow
Moderate flow
Busy flow

 
 

Figure 8. Vertical displacement of the girder in quarter-span under 
stochastic traffic flow. 

Figure 9. Statistics of displacement of girders under 
simulated traffic flows. 
 

By the same way, the RMS of all girders can be calculated and the results versus the location of the 
girders are shown in Figure 9. As can be seen from Figure 9, the following results can be obtained: (1) the 
RMS of all girders are symmetric and increase rapidly when the free traffic flow changes to be busy traffic 
flow; (2) the shape of the two type of values are obviously different, where the mean value fits a V-type 
distribution, while the RMS fits a M-type distribution; and (3) the peak-value of mean value of all girders is 
located at the mid-span location, while the peak-value of RMS is located at the quarter-span location. A 
physical interpretation of these results can be explained by the  structural modal shape. It is observed that 
the shape of the RMS is similar to the 1st vertical modal shape, while the shape of the mean value is similar 
to the 2st vertical modal shape. It was also observed from the animation of the transient analysis  that the 
girder in the quarter-span had a sever vibration compared with the girder in mid-span.  

Once the statistical information are obtained from the traffic-bridge dynamic analysis, the first-
passage reliability can be calculated by employing the Rice formula. According to the design code in China 
(MOCAT 2004), the threshold in Eq. (6) a is equal to L/400=2.05m, where L is the length of mid-span of 
the bridge. The first-passage reliability indexes of the quarter-span of the suspension bridge girders 
subjected to free traffic, moderate flow, and heavy flow are shown in Figure 10. 
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Figure 10. Frist-passage reliability of the suspension bridge girders subjected to three types of traffic flow. 
 
 It can be found that there is an obvious demarcation line between them, where the reliability index for 
the case of busy traffic flow is the smallest and that of the heavy traffic flow is the greatest. When the 
service time of the bridge increase from 1a to 100a, the corresponding first-passage reliability index of the 
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bridge decrease from 4.15 to 2.94. For the same service time, 100a, the reliability of the square-span girder 
under free flow, moderate flow, and busy flow are 6.28, 4.65, and 2.94, respectively. It can be found that 
the type of traffic flow, rather than the service time, has a significant influence on the first-passage 
reliability index of the bridge. 

4. Conclusions 

A general framework was developed for evaluating the serviceability reliability of long-span bridges 
subjected to stochastic traffic flow considering the actual stochastic traffic information. Three types of 
stochastic traffic flows, including busy flow, moderate flow, and free flow, was simulated by the cellular 
automation approach using the weigh-in-motion data. The traffic flow was transformed into time-variant 
vertical forces using an equivalent dynamic wheel load approach for the purpose of simulating time-history 
responses of a bridge girder in the finite element model. Statistical information of the bridge responses, 
such as mean value and root-mean-square, was then calculated. Then, the first-passage reliability of a case 
study bridge was calculated based on the established first-passage model utilizing the basis of Rice’s 
formula. 

In the case study, three types of traffic flow as well as the corresponding responses of the suspension 
bridge girders were simulated and subsequently the statistical analysis of first-passage problem was 
conducted. Numerical results indicated that: (1) under stochastic traffic flow, the shape of distribution for 
the mean value and RMS of all girders are different, where the mean value fits a V-type distribution; (2) the 
peak-value of mean value of all girders is located at the mid-span location, while the peak-value of RMS is 
located at the quarter-span location; (3) considering the design service life (1a to 100a) and the assumed 
occupancy of statistical busy flow, the first-passage reliability index of the above locations dropped from 
4.72 to 3.68. Consideration of busy traffic flow is obvious important for assessing safety of long-span 
bridges. These numerical results are valuable contributions to the literature. 

The result can be checked by the rough Monte Carlo simulation in theory. However, it’s an extremely 
time-consuming problem for carrying out a long-time simulation with a normal personal computer. 
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Abstract: In order to evaluate the reliability of long-span cable-stayed bridges, a computational framework 
utilizing a hybrid algorithm is developed. The framework integrates the advantages of finite element 
analysis, radial basis function neural networks, genetic algorithms, and Monte-Carlo importance sampling 
method (MCIS) together. These approaches are combined intelligently with consideration of a platform. 
The feasibility of this framework is verified through a case study, where a prestressed concrete cable-stayed 
bridge is presented. The parametric study indicates that: a) the failure probability caused by displacement 
limit of mid-span is greater than that caused by the cable strength failure. b) the mean value and standard 
deviation of vehicle loads have a higher influence on reliability of the cable-stayed bridge. 

Keywords: cable-stayed bridge, reliability, neural network, genetic algorithm, Monte Carlo simulation 

1. Introduction

Cable-stayed bridges were widely used for long-span bridges because of their superior mechanical 
characteristics and reasonable economy. With consideration of increase of traffic flows and resistance 
deterioration, more attention should be taken more attention for the structural safety of these bridges. It is 
necessary to evaluate the reliability of these bridges using a high efficient algorithm. 

The common used reliability evaluation method is the First-order Second-moment Method (FOSM), 
Monte Carlo sampling method (MCS), response surface method (RSM), random finite element method 
(RFEA). The RSM together with artificial neural network (ANN) was proposed to calculate structural 
failure probability and the method was proved to have a higher efficiency and precision compared with 
traditional FOSM method (Cheng et al., 2008). The FOSM method was utilized to evaluate reliability of 
RunYang Yangtze River Bridge and parameters were also carried out (Wang et al., 2010). A joint algorithm 
which combined RFEA and RSM, FEM, MCS methods was proposed to analysis the dynamic features of 
JiangYin Yangzte River Bridge where the joint algorithm was proved to be accurate and efficient (Cheng 
and Xiao, 2005). 
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There are three major problems in reliability assessment of long–span prestressed concrete (PC) 
cable-stayed bridge. First, structural nonlinearity during construction is getting more important with 
increase of the length of cable-stayed bridges. Second, there are many parameters for construction analysis 
and many random variables in the reliability analysis model. Finally, the structural response functions are 
implicit without a specific expression. With consideration of these reasons, the common reliability methods 
have some limits in evaluating reliability of cable-stayed bridges Thus, it is urgent to develop an effective 
and precise approach for reliability assessment of cable-stayed bridges.  

In this paper, a hybrid approach will be developed for reliability assessment of long-span cable-stayed 
bridges. The hybrid approach will be verified through several numerical studies. Finally, the hybrid 
approach will be used for reliability assessment of a long-span suspension bridge. Parametric studies of the 
bridge will be discussed. 

 
 

2. Mathematical Model 
 

The structural system of cable-stayed bridges are highly statically indeterminate and geometric 
nonlinear. Therefore, the limit states functions of long-span cable-stayed bridge are complex and implicit 
with lots of random variables. It is important to establish an appropriate mathematical model for the 
cable-stayed bridge. 

In actual, the reliability index of bridge under serviceability limit states is lower than the index under 
ultimate limit states (Wu and Zhao, 2006), so bridge reliability assessment is commonly analyzed to meet 
requirements under serviceability limit states instead of under ultimate limit states. In order to control stress, 
cracks and deformation under a certain limiting value under serviceability states and guarantee bridge 
structure in service, assessment of service performance for bridge is critically analyzed under serviceability 
limit states. Strength failure of a stay-cable and displacement transfinite failure of mid-span for main girder 
are taken into consideration in this paper. The limit state functions of cable-stayed bridges caused by 
strength failure of cables and displacement failure of girders can be written as 

1 u cab 1( ,..., )i i
nZ T T x x                           (1) 

2 max mid 1( ,..., )nZ u u x x                          (2) 

Where x  is random variables, u
iT  is yield strength of the i th stay-cable, n is the number of strands 

in a stay-cable , A is cross-sectional area of single strands, σb is yield strength of single strands, 

526



Reliability Assessment of Long-Span Cable-Stayed Bridges Based on Hybrid Algorithm 

REC 2016 - Y. Lui, Q. Wang and N. Lu 

cab 1( ,..., )i
nT x x is of the cable force of the ith cable. The maximum of vertical deflection umax for concrete 

cable-stayed bridge is less than L/500（L is mid-span of main girder） under vehicle load according to the 
chinese national standard (JTJ027-96, 1996), umid(x1,…,xn) is vertical displacement value of mid-span node 
for main girder under vehicle load. Tcab

i(x1,…,xn) and umid(x1,…,xn) both are high-order nonlinearity implicit 
performance function. All of the structural response functions can be calculated with the hybrid approach 
which will be illustrated below.

3. Proposed Hybrid Approach

The procedure of hybrid algorithm for structural reliability assessment is shown in Figure 1. As shown in 
Figure 1, the hybrid algorithm integrates the FEA, Neural networks, GA, and MCS together to computate
the reliability index of cable-stayed bridges.

Determine the random 
variables and their statistical 

parametric characteristics

Using RBF neural 
network generalization 

structural response

Using GA to search 
checking points

Using the MCIS to 
calculate reliability 

index

Meet the accuracy 
requirement

Reconstruction 
the RBF neural 
network in the 
checking point

No

Output the reliability index

Set the RBF neural network 
parameters and random variables 

normalization processing

The construction of RBF neural 
network model structure

Construction the training sample 
according to the uniform design 

method；Construction the 
validation sample according to the 

random sampling method

The RBF neural network 
parameters weren't stopped to 

adjust until  mean square error of 
sample set meets the accuracy 

requirement
Yes

Figure 1. Flowchart of the Hybrid approach for Structural Reliability Analysis.

RBF neural networks in the hybrid algorithm is used to approximate the structural response function. 
RBF neural network is a feedforward neural network which is composed of input layer, hidden layer and 
output layer. The hidden layer of radial basis function is Gaussion function, while the out layer is linear
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functions. The kernel Gaussion is 

  2
( ) ( )exp

2

T
i i

i
i

x c x cG x


  
  

 
                       (3) 

Where x is m-dimensional vector of input data, ci and σi are the mean and standard deviation of RBF 
neural network respectively, respectively. T is a transposed matrix. 

For finite element analysis of the Long-span PC cable-stayed bridge, the high-order indetermination, 
strong nonlinearity, implicit performance function should be paid special attention. The RBF neural 
network is used to approximate the structural response instead of the FEA model. The advantage of RBF 
method is the computational efficiency and precision compared with the traditional BP neural networks. 
The RBF neural networks are especially efficient for structural high-order multivariate nonlinear functions. 
A RBF neural network is shown in Figure 2, where x and y are input data and output data of structural 
response, respectively. 

 

 
Figure 2. The Structural Diagram of RBF Neural Network. 

 

Sample points are chosen according to the sample value range using a sample point formation method. 
In order to ensure design sample points are in an effective range, numerical value distributes betweenμ-3σ 
and μ+3σ) were used in this paper with consideration of the 3σ principle (Zhang et al., 2008). Uniform 
design (UD) method is used to simulate the experimental data, because the UD method has a supper 
performance in making the samples have a uniform distribution compared with the orthogonal design 
method. A data processing system (DPS) (Tang and Zhang, 2012) is used in this paper to simulate the 
uniform distribution samples, because of its multi-factors and multi-lever-figures by multi-iterations feature. 
After that the RBF neural network will be selected to conduct the response function approximation.  

Genetic algorithm is used to search checking point in structural reliability index calculation. The 
search problem can be concluded in a constrained optimization models as follows. 
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Where x1,…,xn are structural independent random variances, respectively. The structural limit state 
equation can be written as Zi(x1,…,xn)=0. Rosenblatt transformation or orthogonal transformation (Li and 
Hu, 2000) can be used to transform the relative random variables into linear independent standard normal 
distribution random variables. Afterwards, the equivalent normal distribution characteristic values, such as 

mean value 
ix   and standard deviation

ix  , can be obtained. Reliability index β is defined as the shortest 

distance from origin to limit state plane in the standard normal coordinate system, where xi
* is the most 

probability failure point. 
On account of only existing one equality constraint in constraint optimization problem of calculating 

structural reliability, genetic algorithm is not suitable for the optimal solution. In addition, the constraint 
optimization should be transformed to unconstraint optimization, when using the genetic algorithm. In order 
to solve constraint optimization problem in Eq. (4), =a penalty function is used in this paper. 

Failure probability Pf is usually quite small in actual engineering structures. When Pf is less than 10-3, 
the sample number should be greater than 105 for the purpose of ensuring the computational accuracy. 

When the estimation fP error of failure probability Pf is less than 20%, the probability is greater than 95%, 

where the relative error ε of fP is 0.2 and significance level uα/2 is 1.96 (Gong et al, 2012). The sampling 

number N should satisfy the inequality. 

2 2

2 3

100 ( 2 )exp( ) ( )

( ) ( )
N

  

 

     
   

                   （5） 

Where β is an predicted reliability index, Φ() is an standard normal cumulative probability 
distribution function. 

Importance sampling approach also known as variance reduction technique is adopted to reduce the 
sample size, the technique improves computational efficiency in conditions of guarantee of the same 
precision. Importance sampling method increases sample points in failure region appropriately to reduce 
variance through altering the sample center. This method is often applied in many areas because of its 
feasibility and efficiency. 

According to the above mentioned computational framework of the hybrid algorithm, DPS uniform 
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experimental design of data processing system, MATLAB neural network, genetic algorithm toolbox and 
APDL language platform are applied comprehensively. The calculation flowchart of these computer 
programs is shown in Figure 3. 

 

 GUI 
interface 
based on 

MATLAB

The DPS data 
processing system

UD data storage in 
excel format

The finite element 
software ANSYS

Storage static analysis 
results in excel format

RBF neural 
network toolbox

Neural network 
storage in mat format

 Genetic algorithm  
toolbox GA

Output checking 
point to UI interface

MCIS function

Output reliability 
index and 

checking point

Meet accuracy 
requirement 

No

 Mapping the 
structural 

response by 
using RBF 

neural network

Using GA to 
search checking 

points

Using the MCIS 
to calculate 

reliability index

Output reliability index 

Yes 

 
Figure 3. Framework of a software for Structural Reliability Assessment. 

 
Firstly, uniform experimental data is obtained by DPS data processing system, and sample parameters 

are stored in this system. Secondly, ANSYS finite element analysis software is used to conduct structural 
static analysis. The results and sample parameters are imported in structural response of RBF neural 
network toolbox in order to get limit state equations. Thirdly, the GA genetic algorithm toolbox is used to 
search the design points. UD data is utilized to transform location of sample center. Finally, structural 
reliability index β gets in design point location by MCIS, while the precision requirement is satisfied. 
Otherwise, the above steps are repetition over and over again until meet precision requirement.  

 
 

4. Validation Examples 
 

Computational precision and reliability analysis of the hybrid algorithm will be verified systematically in 
this section. Two validation examples will be discussed. The first one is reliability analysis of performance 
function which has explicit analytic expression and higher nonlinearity degree. The other is reliability 
analysis of simplified bridge structure. In addition, compared with computational result of other methods is 
included. 
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4.1. NUMERICAL EXAMPLE ANALYSIS  
 

Expression of performance function in case 1 is Z=18.46-7.48X1/X2
3, where X1 and X2 both are random 

variables, X1~N(10,2)，X2~N(2.5,0.375). 
Expression of performance function in case 2 is Z=X1·X2-X3, where X1 and X2 are random variables, 

X1~N(0.5472,0.0274)，X2~N(3.8,0.304)，X3~N(1.3,0.91). 
 
Table 1. Reliability calculation results of Case 1 and Case 2. 

 

As shown in Table 1, iterations of the hybrid algorithm is the least compared with other response 
surface methods mentioned in Table 1 and hybrid algorithm achieves the goal of improvement of 
computational efficiency. Hybrid algorithm can meet precision requirement as the same as other response 
surface methods, furthermore, its iterations reduce 20% and precision improves 25%. 

 
 

4.2. RELIABILITY ANALYSIS OF BROTONNE CABLE-STAYED BRIDGE  
 
A cable-stayed bridge named Brotonne bridge is selected herein as an additional verification example. More 
details regarding the limit state functions, description of the random variables and the statistical information 
can be found (Shen and Wang, 1996). As shown in Table 2, sampling times of MCS is 106 so that it is a 
precise value. Reliability index of hybrid algorithm has higher precision than reliability index of FOSM or 
RSM methods, and calculation result of hybrid algorithm is similar to the value that calculated by MCS 
method (Zhang et al., 2008; Zhang and Liu, 2001). Hence, hybrid algorithm proposed by this paper has 
better precision and can get corresponding checking point which is not list in Table 2 in reliability 
calculation of explicit performance function. 

 
 
 

Case  Computational 
program  MC FOSM 

Reference(Gui J S, Kang H G, 2004) 

Hybrid algorithm  Partial RBF Modified whole RBF 

 
Case 1 

 

Reliability 
index  2.338 2.330 2.350 2.330 2.332 

Iterations - 6 4 6 4 
      

Case 2 
 

Reliability 
index  3.806 3.795 3.799 3.798 3.801 

Iterations - 6 5 9 4 
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Table 2. Results of Static Reliability Analysis for Brotonne Cable-stayed Bridge. 

Failure mode Details 

Methods 

MCS FOSM RSM 

Reference 

(Zhang J 

R, Liu Y, 

2001) 

Reference 

(Zhang Q 

H, Bu Y 

Z, Li Q, 

2008) 

Hybrid 

algorithm 

Girders 

static 

bending Reliability 

index 

3.6104 3.5658 3.5740 3.6193 3.6102 3.6153 

static 

torsion 
- 6.0027 6.0027 6.6027 6.6027 6.0027 

Cables 

and 

towers 

Bulking 

along  

transverse 

bridge Reliability 

index 

- 9.7007 9.7397 9.7032 9.7042 9.7126 

Strength 

along  

longitudinal 

bridge 

3.5128 3.4946 3.4973 3.5063 3.5146 3.5117 

 
 

5. Case Study 
 

5.1. BRIDGE DESCRIPTION 
 

Kangbo bridge is located in Luyu highways in Sichuang province. It is a prestress concrete 
cable-stayed bridge with midspan of 420m as shown in Figure 4. The material of main girders is C60 
concrete, that of towers is C50 concrete. Every tower contains 34 pairs of stay cables. The width of bridge 
deck is 30m, which is arranged in six-lanes. 
 
5.2. RANDOM VARIABLES  
 
As the random variables is associated with materials, external load, and so on. Structural random variables 
in this paper are elasticity modulus Ei of main girder, towers and stay cables, cross-sectional area Ai, 
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bending inertia moment Ii , material density γi, secondary dead load qs and vehicle load qk, statistical 
parameters of these basic random variables need the results of actual bridge detection. 

 
Figure 4. The General Arrangement Diagram of the Kangbo Bridge (unit: cm). 

 
Bridge structure suffers many kinds of loads. In addition, the loading positions are complex under 

normal circumstance. As a result, structural reliability analysis mainly associates with dead load and live 
load for simplification. Live load on the deck regards as the shape of uniform distribution for calculating 
easily. Structural static reliability is lower only under consideration of uniform live load of mid-span for 
main girder of cable-stayed bridge when bridge has different distribution form of live load (Biondini et al., 
2008). Therefore, vehicle load is simplified as uniform load of mid-span for main girder in the below static 
reliability analysis of cable-stayed bridge. Dead load and live load uniform distributed in mid-span of main 
girder is considered in this paper. Statistical parameters characteristics of random variables in this paper are 
shown in Table 3. 
 
5.3. FINITE ELEMENT MODEL  
 
Structure of long-span cable-stayed bridge is complex and its geometric nonlinear effects are important. 
Thus, structural reliability analysis should include their effects. Secondary sequence response surface 
method calculates reliability of main girder for Nanjing second bridge considering geometric nonlinear 
effect of cable-stayed bridge (Chen et al., 2000). It indicates that the reliability index of linear calculation is 
greater than that of nonlinear solution. RSM, FEM, FOSM and importance sampling method are used to 
analyze static reliability of main girder for Nanjing second bridge, the result shows that sag effect of stay 
cables cannot neglect in the field of geometric nonlinear effect and the beam-column effect and large 
displacement effect can neglect when static reliability of cable-stayed bridge is analyzed (Cheng and Xiao, 
2004). 
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Table 3. Statistical Parameters of Random Variables of the Kangbo Bridge. 

Type  Locations Symbol  Distribution 
shape  

Mean 
value  

Standard 
variance  

Elasticity 
modulus 
/(kN·m-2) 

Main girder  E1 Normal 3.64E7 3.64E6 
Towers E2 Normal 3.52E7 3.52E6 

Stay cables E3 Normal 1.95E8 1.95E7 

Cross-sectional 
area 
/m2 

Main girder (standard 
beam section ) A1 Lognormal 20.846 1.042 

Main girder (auxiliary 
pier) A2 Lognormal 24.694 1.235 

The body of towers A3 Lognormal 26.868 1.343 
The root of towers  A4 Lognormal 22.280 1.114 

Single strand in stay 
cables A5 Lognormal 1.4E-4 7.0E-6 

Density  
/(kN·m-3) 

Main girder  γ1 Normal 26.56 1.33 
Towers γ2 Normal 26.24 1.31 

Stay cables γ3 Normal 78.5 3.93 

Second moment 
of area /m4 

Main girder (standard 
beam section ) I1 Lognormal 18.598 0.930 

Main girder (auxiliary 
pier) I2 Lognormal 23.015 1.151 

The body of towers I3 Lognormal 120.864 6.043 
The root of towers  I4 Lognormal 275.517 13.776 

Secondary dead 
load  

/(kN·m-1) 
Main girder qs Normal 132 6.6 

Vehicle load 
/(kN·m-1) 

Main girder of the 
whole bridge  qk Extremum 

Type I 63.5 6.35 

 
This paper is proposed parametric plane finite element model of the Kangbo bridge based on ANSYS, 

geometric nonlinear factors of sag effect for stay cables are considered by equivalent elastic modulus 
method. Main girder and towers are simulated by BEAM 44 units and the sum of units is 470, stay cables 
are simulated by LINK 10. Initial cable force is the measured force, the prestressed effect and the concrete 
shrinkage and creep effect are not considered in calculation. 
 
5.4. LIMIT STATE FUNCTION  
 
Long-span cable-stayed bridges are statically indeterminate. Since they consists lots of complicate elements, 
such as main girders, towers, stay cables, auxiliary piers, and so on. Nonlinear degree is higher so that the 
structural limit state functions are complex. As a result, the progress of searching the major failure mode is 
extremely complicated. In general, structural reliability analysis is associated with failure components, 
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where serviceability is important under actual operation state. 
The serviceability limit state is defined as the event that structural stress or crack exceeds a threshold. 

Hence, in this paper, two failure modes are considered as serviceability limit states including strength 
failure of a single stay-cable and vertical displacement failure of the girders.  

The limit state function is shown in Eq.(1) and Eq.(2). The potential failure elements are shown in 
Figure 4. The serious number of stay-cables are CBA1~CBA34、CBJ1~CBJ34、CNJ1~CNJ34、
CNA1~CNA34. The strength failure event is caused by four longest stay cables named as CBA34, CBJ34, 
CNJ34 and CNA34 on the north tower. The yield strength σb of cables is 1860MPa. The threshold of 
vertical deflection umax for the main girders of cable-stayed concrete bridge is 0.84m under vehicle load 
without consideration of impact factor (JTJ027-96, 1996). 
 
5.5. NETWORK PARAMETERS SELECTION AND RELIABILITY ANALYSIS RESULT  
 

For reliability analysis, several random variables are selected in this paper referred from calculation 
results about sensitivity factors of structural static reliability (Cheng and Xiao, 2004). A RBF neural 
network is designed and the network has 17 nodes of input layer. They are random variables considered in 
structural analysis progress primarily and 5 nodes of output layer which are displacement of mid-span for 
structural main girder, cable force of CBA34, CBJ34, CNJ34 and CNA34. Parameters in RBF neural 
network are shown in Table 4. 

 
Table 4. Parameters of RBF Neural Network. 

Items 
Numerical 

value  
Introductions 

Nodes of the input layer 17 Random variables in Tab.3 

Nodes of the output layer 5 
umid和Tcabi(i=CBA34, CBJ34, 

CNJ34,CNA34) 

The class number of training data 200 
Uniform design chart is 

(U200(20017))  

The class number of test data 30 random drawing 

Network control precision 1e-6 
Precision of network training 

after data normalization 

Precision testing requirements 1% 

The error rate of mid-span 

displacement and #CNA34 

cable force  
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Static reliability of cable-stayed bridge is calculated utilizing the hybrid approach. Under 

serviceability limit state, vehicle loads are distributed uniformly in mid-span of main girder. The 
corresponding static reliability β of displacement limit failure in mid-span for main girder is 7.394. The 
reliability indices of strength failure for #CBA34、#CBJ34、#CNJ34 and #CNA34 cables are βCBA34=4.973, 
βCBJ34=5.236, βCNJ34=5.112 and βCNA34=4.867. The five reliability indices are shown in Figure 5.  
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Figure 5. The Reliability Indices of the Critical Failure Location. 

 

Structural reliability index β is calculated by mean value, standard deviation, of random variables. It 
is necessary to do research about influence on reliability index β by mean value, standard deviation, of 
random variables. It is sensitivity study of random variables (Cheng and Li, 2009). Reliability index β 
sensitivity on mean value μi, standard deviation σi of random variables is obtained by approximate formulae 
as follows (Hohenbichler and Rackwitz, 1986). 

2

i
i

i
i












 


  

                           （6） 

Where αi is direction of the ith random variable in standard normal distribution space, β is reliability 
index, μi and σi are mean value and standard deviation of the ith random variable. Sensitivity of reliability 
index on different mean value and standard deviation of random variable is observed under vehicle load 
distributed in whole main span in the point of mid-span of main span, as shown in Figure 6, reliability index 
is the most sensitive to mean value and standard deviation of vehicle load qk. 
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(a) The mean of random variable.  
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(b) The standard deviation of random variable. 

Figure 6. Sensitivity of the Reliability Index for the Random Variables of Mean, Standard Deviation. 

 

The influence of vehicle load on reliability index is studied under different mean coefficient (Kong et 
al, 2012). The variation tendencies of reliability index β under displacement ultra-limit failure state in 
mid-span of main girder and strength failure state of the four longest stay cables are shown in Figure 7, 
where intervals of mean coefficient for vertical load qk is 1~2. 
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Figure 7. Reliability Index of Critical Failure Locations under Different Mean Coefficient of Vehicle Loads. 

 
It can be found from Figure 7 that reliability indices β of displacement failure of mid-span for main 

girder and strength failure of that four longest stay cables are decrease with the increase of mean coefficient 
of vehicle load. When mean coefficient increase to 2.0, the displacement ultra-limit failure declines 
30.786% and the strength failure declines 16.558%~18.923%. With gradually development of mean 
coefficient, downward trend of the displacement ultra-limit failure is more obvious. The reliability index of 
displacement ultra-limit failure for mid-span is greater than strength failure of four long stay cables. 

 
 

6. Conclusions 
 

This paper presented a hybrid algorithm method for reliability analysis of long-span PC cable-stayed bridge 
based on reliability theory. The hybrid algorithm method was used to analyze reliability index of a 
long-span PC cable-stayed bridge under vehicle load. Influence of random variables on structural reliability 
index has been conducted with a sensitivity analysis. The following conclusions can be obtained: 

a) The hybrid approach integrates the advantage of RBF neural network, GA and Monte Carlo 
importance sampling method. Two numerical studies are utilized to verify the feasibility of the hybrid 
approach applied to reliability calculation of large complicated structures. The analysis results indicate that 
the hybrid approach has satisfactory accuracy and calculation efficiency.  
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b)  In the case study, the reliability index for displacement failure of griders in mid-span is greater 
than reliability index for strength failure of the stay-cable.  

c) Parametric sensitivity analysis indicates that reliability index of cable-stayed bridge is sensitive to 
mean and standard deviation of vehicle load. The other sensitive factors are cross section area of stay cable, 
mean and standard deviation of elasticity modulus. 

d) Reliability indices of displacement failure of mid-span for main girder and strength failure of the 
four longest stay cables are decrease with the increase of mean coefficient of vehicle load. Besides, 
downward trend of the displacement ultra-limit failure is more obvious with gradually development of 
mean coefficient. 
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Abstract: In this paper, we introduce a method to identify a damage zone and the material
properties at the damage zone by means of inverse analysis based on a series of measurement data
such as transient displacements, temperatures and water pressures. The inverse problem is solved
iteratively by the Particle Swarm Optimization method. The uncertainty of the measurement data
may propagate to the uncertainty in the identification of the damage zone. This paper considers
the uncertainty of the measurements by assuming different noise levels of the measurements. The
uncertainty of the damage zone can be quantified by its probability distribution.

Keywords: damage identification, masonry dam, optimization, uncertainty quantification

1. Introduction

After more than one hundred years in use, material properties of the masonry dam bodies are
changed. The deterioration of the material properties is supposed because of ageing, weathering
and chemical effects. Consequently, there could appear some zones or cracks, where the properties
of the material (e.g. stiffness, permeability and thermal conductivity) have a big change. It is useful
and economic that the damage zone can be identified based on the present measurement data,
which are obtained via the devices which are permanently installed in the dam.

Ordinarily, masonry dams have to bear two major loads: water pressure and self-weight load.
Besides that the temperature inside the dam structure varies according to the water levels and
air temperatures. This causes stresses within the structure and deformation of the dam. These be-
haviours have been monitored in terms of temporal displacement, water pressure, and temperature.
According to the measurement in (Bettzieche, 2004), the effect of temperature on the deformation
of the masonry dam is significant. Therefore, thermal conduction, water transport and force -
deformation relations have to be considered when performing numerical simulations of the dam
(Nguyen-Tuan et al., 2015).

The damage can be identified based on statistics and optimization against the experimental data
such as reduction of natural frequencies (Wang and He, 2007) or monitoring of displacements with
radar (Ardito and Cocchetti, 2006). The damage zone of the dam has been also identified using
the inverse problem based on a hydro-mechanical model (Lahmer, 2010). It is to note that the

c© 2016 by authors. Printed in Germany.
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reliability of the solution of the inverse problem depends on the accuracy of the measurements, the
variety of the measurements and the variety of loading conditions. The variety of the measurements
is determined by the distribution of the measurement points and the type of measurements (e.g.
displacement, water pressure, seepage of water and temperature). In this paper, we introduce a
method to identify the damage zone by means of inverse analysis based on a series of measurement
data such as transient displacements, temperatures and water pressures. The inverse problem is
solved iteratively by the Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995). The
uncertainties of the measurement data may propagate to the uncertainty in the identification of
the damage zone. This paper considers the uncertainties of the measurements by assuming different
noise realizations in the data and the uncertainties of the damage zone can be quantified by its
probability distribution.

2. Methodology

2.1. Formulation of inverse analysis

The forward operator (F ), which maps the input model parameters of the damage zone to the
responses at the finite sub-domains or boundaries (i.e displacement u, water pressure Pl and
temperature T ), is

F : X → Y

ppp 7→ (u, Pl, T ),
(1)

where X denotes the parameter space, Y denotes the space of responses. The responses at the
sub-domains Γ is denoted by a set of responses e.g. yyy(t) = y(u(t), Pl(t), T (t)), where t is the time,
u is the displacement, Pl is the liquid pressure and T is the temperature. The measurements of the
responses are generally distorted by a certain amount of noise. These measurements with noise are
denoted by yyyε. The εεε is introduced as a set of random noise in the measurements, i.e.

yyyε(t) = yyy(t) + εεε(t). (2)

Assuming that a finite element model is used as forward operator, which maps a model with damage
zone to the model responses accurately, the inverse problem with given measured data is defined
by

F (ppp) = yyyε(t). (3)

In the indirect method of inverse analysis, the parameters ppp are estimated by minimising a norm of
the difference between the measured responses (yyyε) and the model responses (F (ppp)). The norm is
known as ’objective function’. The optimization algorithms drive an objective function in a way to
find the minimum value of the objective function by changing the input parameters systematically.
The questions of the inverse problem are to define the parameters as variables for the forward model,
to define the objective function and to establish a suitable iterative algorithm for optimizing the
objective function.
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2.2. Objective function

Let yyyε be a set of measured data from an experiment and yyyc be a set of obtained data by numerical
simulation depending on a vector of model parameters ppp = {p1, p2, ..., pJ}. The difference between
the calculated and measured values defines the residual

ftmd(ppp) = yεtmd − yctmd. (4)

It is defined that t = 1, 2, ..., Tt, where Tt is the number of measured data according to time,
m = 1, 2, ...,M , where M is the number of selected points for observation, d = 1, 2, ..., D is the
number of serial measurements, for instance temperature, degree of saturation, or stress in one
location and ωtmd is the weighting factor for each measurement, a function of the model parameters
is expressed as a normalized weighted sum of the squared errors

fMAE
d (ppp) =

√√√√ Tt∑
t=1

M∑
m=1

[ftmd(ppp)]2ωtmd∑Tt
t=1

∑M
m=1 [yεtmd]2

, (5)

where values of ωtmd depend on the importance and reliability of the analysed data. In Eq. (5), it

is assumed that
∑Tt

t=1

∑M
m=1 [yεtmd]2 is larger than zero.

Finally, considering the multi-field data, such as D different serial measurements, the objective
function is defined as

f(ppp) =
1

D

D∑
d=1

fMAE
d (ppp)ωd , (6)

where ωd is the weighting factor for each serial measurement.
In special cases, when the yε cannot be measured at each point, i.e. the flux of water out of

the dam, the common method to do so is to collect the amount of water on finite areas. Figure 2
illustrates the water collection along the downstream side. The water fluxes at the areas a−b, b−c,
c− d, d− e and e− f are collected at the collecting point a, b, c, d and e respectively. Therefore, in
the numerical simulation we have to integrate the water in each domain (a− b, b− c, c− d, d− e
and e− f) in order to compare with the measurement data. For instance, water collected Qo at a
collecting point is

Qo =

b∫
a

qodl =

b∫
a

[qx cos(θ) + qy sin(θ)] dl, (7)

where qo is the flux of water out of line a-b at position l. The direction of the flow is perpendicular
with the boundary plain, therefore, qo is converted from flux flowing x axis and flux following y
axis, see Fig 1. Here, θ denotes the angle between boundary line and vertical axis.
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Figure 1. Axis translation of the out flow of water.

2.3. Parameterization of the forward problem

The parameters of the forward problem include a set of parameters for the initial materials (struc-
tures and subsoils), a set of parameters for the damage material, a set of parameters defining
the geometry of the initial forward problem and a set of parameters defining the geometry of the
damage zone. In this paper, we define the sets of parameters for the initial materials and the set
of parameters defining the geometry of the initial forward problem as the constants. The set of
parameters defining the geometry of the damage zone is considered the unknowns in the inverse
problem. The geometry of damage zone is diverse. The complex geometry could lead to the complex
function with many parameters, which could slow down the convergence of the objective function.
It is acceptable if the damage zone can be quantified approximately by less number of parameters.
In this paper, the geometry of the damage geometry is defined by a moving elliptic shape. The
material parameters of the damage zone are also considered the unknowns. Therefore, the damage
zone can be defined as follows,

g(ppp) = g(pppg, pppm) (8)

where pppg is the vector defining the geometry of the damage, pppg = (a, b, xc, yc, α), in which a is
the major radius, b is the minor radius, (xc, yc) are the center coordinates in the x, y plain, α
the rotation angle of the major diameter. The elements inside this ellipse are defined as damage
material. The example of the damage zone in the dam body is presented in Figure 2, the white
elements represent the damage zone, which are bounded by the function g(pppg).

The vector pppm includes model parameters defining the behaviour of the material at the damage
zone, pppm = (E, ko, λ), in which E is the elastic modulus, ko is the intrinsic permeability, λ is
the thermal conductivity. The deterioration of the material properties at the damage zone has
close correlation with the porosity. The change of porosity effects explicitly the elastic modulus,
the permeability and the thermal conductivity. Therefore, the relations between E, ko and λ are
described in the constitutive models. With the change of porosity, these parameters will change,
accordingly. Consequently, the number of unknown parameters reduces.
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Figure 2. Geometry, assumed damage zone and measurement locations.

2.4. Optimization method

Particle swarm optimisation works basically by considering a population (called a ”swarm”) of
candidate solutions of the optimisation problem (called particles). These particles are moved around
in the search space according to several simple laws. The movements of the particles are guided
by their own best known position in the search space as well as the entire swarm’s best known
position. Translating this to parameter identification problems, we consider a collection (swarm) of
parameter vectors. Now, the entries in the vectors are repeatedly updated by combining local and
global information about the values of the objective functions for the different parameter vectors.
When better vectors are discovered, they will determine the further updates of the parameters.
This process is repeated iteratively and by doing so, it is expected that a satisfactory solution of
the calibration problem will eventually be discovered with high probability.
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2.5. Uncertainties in damage identification

The sources of uncertainties in identification of the damage are of different types, for instance, the
inhomogeneous material, the accuracy of the model, the accuracy of the measurements and the
uncertainty of the optimization algorithm. This paper firstly intends to quantify the uncertainties
caused by the accuracy of the measurements and the uncertainty of the optimization algorithm.
By changing the amount of noise εεε (ε = δRny

ε), where ε is an entry of εεε, Rn is a random number
following the standard normal distribution, δ is the noise level, the accuracy of the re-constructed
shapes will be considered.

Secondly, the uncertainty of the optimization algorithm can be quantified by the distribution of
the solution, when the optimization is repeated n times with the random initial guess in the search
space (Nguyen-Tuan et al., 2016), it is called sampling process. The samples of the optimizations
are accessed by statistical methods accordingly.

2.6. Forward model: balance equations

The THM problems are formulated by a system of coupled balance equations. Equations for mass
balance were established by following the compositional approach (Olivella et al., 1996). Consti-
tutive equations are used to connect between the primary unknowns (i.e. displacements, liquid
pressure, gas pressure and temperature) to the parameters and the dependent variables e.g. water
saturation, energy flux and so on. In the sequel, we describe briefly the forward model by giving
the most essential balance equations.

Mass balance of water: Water is present in the liquid phase. The total mass balance of water is
expressed as follows:

∂

∂t
(θw) +∇ · (qqqw) = fw. (9)

where fw is an external supply of water, θw is the volumetric mass of water, qqqw is the advective
fluxes.

Momentum balance for the medium: The momentum balance reduces to the equilibrium of
stresses if the inertial terms are neglected as:

∇ · σσσ + bbb = 0, (10)

where, σσσ is the stress tensor and bbb is the vector of body forces.

Internal energy balance for the medium: Heat transfer is modelled considering heat conduc-
tion of material and heat transport by means of mass motion. The equation for the internal
energy balance for the porous medium is established taking into account the internal energy
in each phase (Es, El) as:

∂

∂t
(Esρs (1− φ) + Ewρwφ) +

∇ · (iiic + jjjEs + jjjEw) = fQ,
(11)
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where, iiic is the energy flux due to the conduction through the porous medium, the fluxes jjjEs,
jjjEw are advective fluxes of energy caused by mass motions and fQ is an internal/external
energy supply, ρs is the density of solid, ρw is the density of the liquid i.e. 1000 [kg.m−3].

The final objective is to find the unknowns from the balance equations. Therefore, the dependent
variables have to be related to the unknowns in the following constitutive relations. The constitu-
tive relations of the coupled THM model includes thermo-elastic model for stress-strain relation,
constitutive model for water transport (Darcy’s law) and constitutive model for heat conduction
(Fourier’s law). The validation of the model in the non-damage case is reported in Nguyen-Tuan
et al..

3. Application to Masonry Dams

3.1. Geometry and discretization

The cross section of the Fürwigge dam is used for forward and inverse simulations. The data are
generated synthetically by solving the forward problem. To avoid inverse crimes (Colton and Kress,
2013), the generation of the synthetic measurements is performed on a different mesh from the
inverse process. The geometry and discretization mesh, which can be seen in Figure 2, are used for
synthesizing measurement data. This mesh has 2520 elements. In the inverse process, the geometry
mesh has 3357 elements. It is assumed that the white elements is a damage zone where its material
properties (pppm) are defined by its porosity.

3.2. Damage indentification

The assumed damage zone is pure artificial and not related to the current working conditions of
the Füwigge dam. The search space is illustrated in Figure 3. The noise level is δ = ±1 and ±5%.
We chose a swarm size of 24 particles. The reason is that the convergence of the big swarm is faster
than the convergence of the small swarm, and the big swarm will decrease the probability of the
local minimum trap.

The measurement data, which are used to formulate the objective function, are established by
the displacement, temperature, water pressure and the collection of the water outflow. Displacement
are measured by 2 radar devices at the downstream side and pendulum for the upstream side, herein
11 measurement points are the selected (red rectangular points). Water pressures and temperatures
are measured at the cyan circular points (10 points), the water pressures are additional measured
at two more white points as it was designed in Fürwigge dam, see Figure 2. Thermocouples are
used to measure temperature. Water pressures are measured by piezometers or tensiometers. The
volume of water outflow at downstream side (magenta line) are measured at the collecting points
(a, b, c, d and e). In numerical simulation, the water outflow is computed as in Eq. (8). The porosity
is the unknown quantity and it varies in the bounds from 0.30 to 0.65.

REC 2016 - L. Nguyen-Tuan, T. Lahmer, C. Könke and V. Bettzieche

547



L. Nguyen-Tuan, T. Lahmer, C. Könke and V. Bettzieche

Figure 3. Materials and searching zone.

4. Results

Figure 4 presents the re-construction (inverse) solutions considering several noise levels. When the
level of noise increases from ±1% to ±5% the uncertainty of the solutions increase, accordingly.
The best objective functions presented in the figure is of the solution with ±1% noise level. The
deterioration of the material properties is defined by the material porosity (φ). The solution in
terms of porosity shows that the inverse solutions are close to the exact solution. The figure shows
that the PSO method can be a good method for damage identification.
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Figure 4. Results of optimization for different noise levels.
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Figure 5. Histogram of the solutions (δ = 0%).

REC 2016 - L. Nguyen-Tuan, T. Lahmer, C. Könke and V. Bettzieche

549



L. Nguyen-Tuan, T. Lahmer, C. Könke and V. Bettzieche

The inverse problem is solved repeatedly 15 times by PSO method. In order to avoid the depen-
dence of the initial guess, the initial guesses of the particles are randomly uniform distributed in
their search space. The histogram of the solution is presented in Figure 5. The color bar illustrates
the frequency of the solutions which describe the damage zone. Certainly, the solution can not
fit totally with the exact solution, because we used different meshes in the inverse and forward
problems. It shows that the method can identify the damage zone with small uncertainty, when
the noise level is zero. However, the uncertainty can also increase when the noise level increases.
It can be recognized that the solutions are not identical with different initial guesses, however, the
convergence of the solution is close to the exact solution.

5. Conclusion

In this paper, we introduce the method to not only detect the damage zone but also identify the
severity of the damage. The severity of the damage is described by its material parameters in the
coupled THM model. The PSO shows that it is a robust method in searching the minimum of
the non-linear objective functions. The accuracy of the measurement data effects significantly the
uncertainty of the results of the inverse problems. The uncertainty of the inverse problem can be
quantified by the the probability distribution of the solutions obtained from the sampling process.
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